Sink Hole Creek Mitigation Project Year 1 Monitoring Report Mitchell County, North Carolina

<u>Monitoring Firm:</u> Michael Baker Engineering, Inc. (Baker) <u>Monitoring Firm POC:</u> Carmen McIntyre <u>Prepared for:</u> North Carolina Ecosystem Enhancement Program (NCEEP)

NCEEP Project Manager: Harry Tsomides <u>Report Prepared By:</u> Michael Baker Engineering, Inc., NC Professional Engineering License #F-1084 797 Haywood Road, Suite 201 Asheville, NC 28806 <u>Contract Number:</u> D06125-C, EEP Project Number: 92663 <u>Project Construction:</u> 2010 <u>Data Collection Period:</u> 2011 <u>Date Submitted:</u> 2012

Sink Hole Creek Mitigation Project Mitchell County, North Carolina

Report Prepared and Submitted by Michael Baker Engineering, Inc. NC Professional Engineering License # F-1048

Michael Baker Engineering, Inc. 797 Haywood Road Suite 201 Asheville, North Carolina 28806 Phone: 828.350.1408 Fax: 828.350.1409

Matthew Reid Project Manager Micky Clemmons Office Principal

TABLE OF CONTENTS

EXEC	UTIVE SUMMARY	V
1.0	PROJECT BACKGROUND	.1
1.1	LOCATION AND SETTING	
1.2	MITIGATION STRUCTURE AND OBJECTIVES	
1.3	PROJECT HISTORY AND BACKGROUND	
1.4	MONITORING PLAN VIEW	.7
2.0	PROJECT CONDITION AND MONITORING RESULTS	12
2.1	VEGETATION ASSESSMENT	12
	2.1.1 Vegetation	12
	2.1.2 Soil Data	14
	2.1.3 Vegetative Problem Areas	14
	2.1.4 Stem Counts	14
2.2		
	2.2.1 Morphologic Parameters and Channel Stability	15
	2.2.2 Hydrology	17
	2.2.3 Photographic Documentation of Site	18
	2.2.4 Stream Stability Assessment	18
2.3	AREAS OF CONCERN	19
3.0	REFERENCES	19

Tables and Figures

Figure	1	Project Location Map
Table	1	Project Mitigation Structure and Objectives Table
Table	2	Project Activity and Reporting History
Table	3	Project Contact Table
Table	4	Project Background Table
Figure	2	Project Approach Map
Table	5	Riparian Buffer Planting List
Table	6	Preliminary Soil Data
Table	7	Stem Count Arranged by Plot-Year 1 (Species Survival Rates)
Table	7b	Stem Count Arranged by Plot-Year 1 (Planted Vs. Total)
Table	8	Vegetative Problem Areas
Table	9	Hydrological (Bankfull) Verifications
Table	10	Stream Problem Areas
Table	11	Categorical Stream Feature Visual Stability Assessment
Table	12	Visual Morphological Stability Assessment
Table	13	Stream Reach Morphology and Hydraulic Data
Table	14	Cross-section Morphology and Hydraulic Data

Appendices

Exhibit	Vegetation Survey Data Tables	A
Exhibit	Vegetation Monitoring Plot Photos	A
Exhibit	Problem Areas Plan View	B
Exhibit	Qualitative Visual Stability Assessment Tables	B
Exhibit	Cross-section Plots with Annual Overlays	B
Exhibit	Longitudinal Profiles with Annual Overlays	B
Exhibit	Stream Reach Morphology and Hydraulic Data	B
Exhibit	Cross-section Morphology and Hydraulic Data	B
Exhibit	Riffle Pebble Count Size Class Distribution (Sink Hole Reach 1)	B
Exhibit	Riffle Pebble Count Size Class Distribution (Sink Hole Reach 2)	B
Exhibit	Stream Reference Station Photologs	B

EXECUTIVE SUMMARY

The Sink Hole Creek site was restored through a full delivery contract with the North Carolina Ecosystem Enhancement Program (NCEEP). This report documents the completion of the project and presents Year 1 monitoring data for the five-year monitoring period. The goals for the restoration project were as follows:

- To create geomorphically stable conditions on the Sink Hole Creek project site;
- The reduction of sediment and nutrient loading through restoration of riparian areas and stream banks and the exclusion of livestock from the streams corridors;
- To improve and restore hydrologic connections between the creek and floodplain;
- The restoration and preservation of headwater tributaries to the North Toe River, French Broad River Basin; and
- To improve aquatic and terrestrial habitat along the project corridor.

To accomplish these goals, the following objectives were implemented:

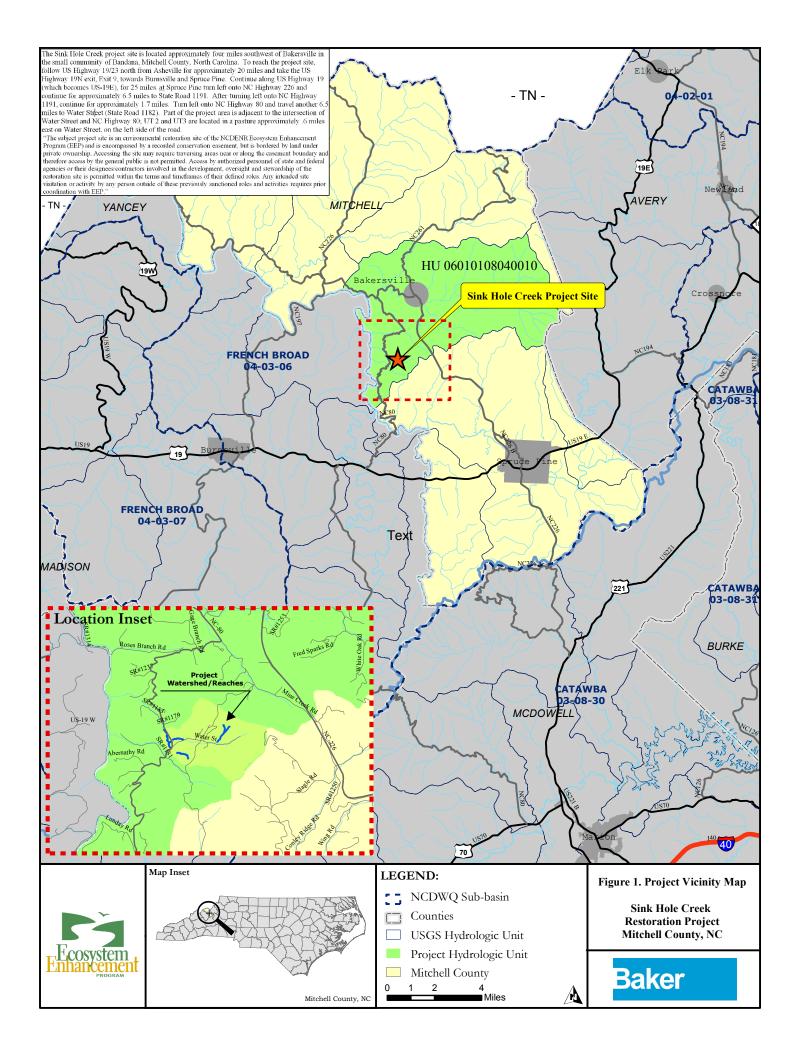
- Restoration of incised, eroding, and channelized streams by creating stable channels that have access to its floodplain;
- Improvement of water quality by establishing buffers for nutrient removal from runoff and by stabilizing streambanks to reduce bank erosion;
- Improvement of in-stream habitat by providing a more diverse bedform with riffles and pools, creating deeper pools, developing areas that increase oxygenation, providing woody debris for habitat, and reducing bank erosion;
- Improvement of terrestrial habitat by planting riparian areas with native vegetation and protection of these areas with a permanent conservation easement and fencing, so that the riparian area will increase storm water runoff filtering capacity, improve bank stability, provide shading to decrease water temperature and improve wildlife habitat.

A total of eight vegetation monitoring plots 100 square meters (m^2) (10m x 10m) in size were installed to predict survivability of the woody vegetation planted on-site. The Year 1 vegetation monitoring indicated an average survival rate of 675 stems per acre. The data shows that the Site is on track to meet both the interim stem survival criteria for Year 3 (320 stems per acre) and the final success criteria of 260 trees per acre by the end of Year 5.

The design implemented at the Sink Hole Creek mitigation project site involved both Priority Level 1 and 2 approaches. The resulting design should ultimately yield primarily a B-type channel for Sink Hole Creek and Reach 2 of UT1. Unnamed tributaries 2 and 3 should become stable A and B-type channels. Restoration and enhancement work were completed in accordance with the approved design approach provided in the mitigation plan for Sink Hole Creek. Longitudinal profile and cross-section data indicate that the project streams have remained stable since baseline monitoring data were collected in the fall of 2010. Although stable, there are sections of UT2 and UT3 where the stream goes subsurface for a period. As A-type streams, this is not unusual. Both streams will be monitored and the EEP will be made aware of efforts to encourage continuous surface flow if necessary. Additionally, as the photo logs included in this report show, herbaceous cover at the project site is dense, and in conjunction with other erosion control measures like matting, is promoting bank stability on-site while planted, woody vegetation becomes more established. Based on geomorphic data presented in Appendix B, this site is currently on track to meet the other success criteria specified in the Sink Hole Creek Mitigation Plan.

Summary information/data related to the occurrence of items such as beaver impacts or encroachment, and statistics related to performance of various project and monitoring elements can be found in the tables and figures in the report appendices. Besides subsurface flow in a few isolated segments on UT2 and UT3, no other notable project elements were found during Year 1 monitoring. Narrative background and supporting information formerly found in these reports can be found in the Baseline Monitoring Report (formerly Mitigation Plan) and in the Mitigation Plan (formerly Restoration Plan) documents available on

EEP's website. All raw data supporting the tables and figures in the appendices is available from EEP upon request.


1.0 PROJECT BACKGROUND

The Sink Hole Creek mitigation site is located approximately four miles southwest of Bakersville, in Mitchell County, North Carolina (Figure 1 in Appendix A). The project site is situated in the French Broad River Basin, within North Carolina Division of Water Quality (NCDWQ) sub-basin 04-03-06 and United States Geologic Survey (USGS) hydrologic unit 06010108040010. The Sink Hole Creek mitigation project is located in a watershed that is predominantly forested, but also contains a small number of residences near Sink Hole Creek and its tributaries. A quarter of the drainage is in some form of pasture land or hay production. Sink Hole Creek and its tributaries have been impaired by historical and recent land management practices that include timber harvesting, pasture conversion, channelization, and livestock grazing. In addition, a historic mica mine is located 1,000 feet north of the intersection of NC Highway 80 and Water Street (SR 1182). Prior to restoration, stream channelization and channel dredging were evident through much of the project site. Over time, these practices have contributed excessive sediment and nutrient loading to Sink Hole Creek and ultimately to the North Toe River which is home to the endangered Appalachian elktoe mussel. A significant loss of woody streambank vegetation occurred during the development of the land for agricultural use. Livestock had open access to portions of Sink Hole Creek, the section of UT1below NC Hwy. 80, UT2, and UT3. Past dredging activities had cut Sink Hole Creek off from its floodplain resulting in an incised channel; while in other sections, stream banks were trampled down, creating over widened channel conditions that contributed to additional sediment and nutrient loading. Land immediately surrounding the preservation reach of UT1 above Hwy. 80 is in forested cover.

The project involved restoration or enhancement of 4,703 linear feet (LF) along four (4) on-site streams: Sink Hole Creek and three (3) smaller unnamed tributaries (UT1, UT2 and UT3). In addition, 1,076 LF of the headwaters of UT 1 were preserved. Sink Hole Creek and UT1 are shown on the USGS topographic quadrangle for the site as being perennial and intermittent streams, respectively. Based on a field evaluation, Sink Hole Creek and the restoration reach of UT1, UT2 and UT3, all were determined to be perennial features using the NCDWQ stream assessment protocol.

1.1 Location and Setting

To reach the project site, follow US Highway 19/23 north from Asheville for approximately 20 miles and take US Highway 19N (Exit 9) towards Burnsville and Spruce Pine. Continue along US Highway 19 (which becomes US-19E), for 25 miles. At Spruce Pine, turn left onto NC Highway 226 and continue for approximately 6.5 miles to State Road 1191. Turn left onto 1191, continue for approximately 1.7 miles, turn left onto NC Highway 80 and travel another 6.5 miles to Water Street (State Road 1182). Part of the project area is adjacent to the intersection of Water Street and NC Highway 80; UT 2 and UT3 are located in a pasture approximately .6 miles east on Water Street, on the left side of the road (Figure 1).

1.2 Mitigation Structure and Objectives

Table 1 summarizes project data for each reach and restoration approaches used. The design implemented at the Sink Hole Creek mitigation project site involved both Priority Level 1 and 2 approaches. The resulting design should ultimately yield primarily a B-type channel for Sink Hole Creek and Reach 2 of UT1. Unnamed tributaries 2 and 3 should become stable A and B-type channels. Restoration and enhancement work were completed in accordance with the approved design approach provided in the mitigation plan for Sink Hole Creek.

	Table 1. Project Mitigation Structure and Objectives Table Sink Hole Creek Mitigation Project-NCEEP Project #92663										
Project Segment or Reach ID	Existing Feet/ Acres	Mitigation Type	Approach	Target Stream Type	Footage or Acreage	Mitigation Ratio	Mitigation Units	Stationing	Commen	t	
Sink Hole	Creek										
Reach 1	1,036 LF	R	PII	Cb/	1,019LF	1.0:1	1,019	0+13 to 11+23	vertical bar restore prof	iks and increas file via grade c	limension by removal of sed floodplain connectivity, and control and constructed riffles.
Reach 2	1,062 LF	R	PII	Eb	1,073LF	1.0:1	1,073	11+23 to 22+08	increased fl		val of vertical banks and nectivity, and restore profile via cted riffles.
UT1											
Reach 1	1,076 LF	Р			1,076 LF	5.0:1	215	-			ustments made.
Reach 2	489 LF	R	PII	В	489 LF	1.0:1	489	0+13 to 5+14	Slight pattern adjustment, removal of vertical banks a increased floodplain connectivity, and restore profile grade control and constructed riffles.		nectivity, and restore profile via
UT 2											
Reach 1	579 LF	R	PI	Aa ⁺ / B	596 LF	1.0:1	596	0+22 to 6+30	dimension floodplain	by removal of connectivity, a	, extensive improvements to vertical banks and increased nd restore profile via multiple nd constructed riffles.
Reach 2	879 LF	R	PI	B/A	882 LF	1.0:1	885	6+30 to 15+12	A direct methane income dimension has never all of		sed floodplain connectivity, and
UT 3				-		-			-		
Reach 1	586 LF	R	PI	Aa ⁺ / B	641 LF	1.0:1	641	0+00 to 6+41	Minor pattern adjustment, extensive improvements to dimension by removal of vertical banks and increased floodplain connectivity, and restore profile via multipl grade control structures and constructed riffles.		vertical banks and increased and restore profile via multiple
Mitigation	n Unit Sun	ımati	ons				I				
Stream	Ripa	arian	Wetla	nd				Total	Wetland	Buffer	Comment
(LF)		(Ac			Nonripar	ian Wet	land (Ac)) (Ac)	(Ac)	
4,918 NA				NA		NA					
Notes:	Notes:										

Anthropogenic land use alteration, such as channelization of streams for agricultural purposes, in the Sink Hole Creek watershed has resulted in various stream corridor impairments. Incision, bank destabilization, erosion, and other ongoing stream processes typical of streams adjusting to modification, were found along various reaches of Sink Hole Creek and the unnamed tributaries within the project area.

In accordance with the approved mitigation plan for the site, construction activities began in May 2010. Project activity on Sink Hole Creek and UT1-Reach 2, consisted of making adjustments to channel dimension, pattern, and profile. A Priority II Restoration approach was used on these stream reaches to restore floodplain connectivity. In addition, some sinuosity was incorporated based on the valley shape and the channel profile was stabilized by creating a step-pool morphology using grade control structures, including constructed riffles. The dimension was improved by eliminating the presence of vertical banks, improving floodplain connectivity by the removal of manmade levies, and correcting prior channelization by making slight adjustments to channel pattern where feasible.

A Priority I Restoration approach was implemented on UT2 and UT3 to raise the channel bed elevation, create a more stable profile, adjust channel alignment and to re-establish a riparian buffer to stabilize the streambanks. Both channels required extensive work as both had been essentially reduced to functioning as severely incised ditches with vertical, eroding banks and an unstable profile that had been cut off from the surrounding floodplain and had multiple headcuts.

Throughout the project, vertical stability was the most important project objective to achieve stability, water quality, and habitat goals. In-stream structures (constructed riffles, boulder steps, log vanes, and log rollers) were used to control streambed grade, reduce stresses on streambanks, and promote diversity of bedform and habitat. Reach-wide grade control was provided by the aforementioned in-stream structures and by bedrock where present. Structures were spaced at a distance that resulted in the downstream header protecting the upstream footer to create a redundancy that will ensure long term vertical stability.

Stream dimensions were adjusted to eliminate vertical banks and erosion resulting from excessive shear stress and lack of floodplain relief. Streambanks were stabilized using a combination of erosion control matting, bare-root planting, transplants, and live staking. Transplants will provide living root mass quickly to increase streambank stability and create shaded holding areas for fish and aquatic biota. Native vegetation was planted across the site, and the entire mitigation site is protected through a permanent conservation easement.

1.3 Project History and Background

The chronology of the Sink Hole Creek mitigation project is presented in Table 2 while the contact information for designers, contractors and plant material suppliers is presented in Table 3. Relevant project background information is presented in Table 4. Total stream length across the project increased from approximately 5,707 LF to 5,779 LF (excluding easement breaks).

Table 2. Project Activity and Reporting History Sink Hole Creek Mitigation Project-NCEEP Project #92663					
Activity or Report	Data Collection Complete	Completion or Delivery			
Restoration Plan		May 2009			
Final Design-90%		June 2009			
Construction		August 2010			
Temporary S&E mix applied to entire project area		May-July 2010			
Permanent seed mix applied to project site		August 2010			
Containerized and B&B plantings set out		April 2011			
Flood Event		July 2010			
Installation of crest gauges		January 2011			
Mitigation Plan / As-built (Year 0 Monitoring – baseline)	April 2011 (Vegetation Monitoring)	May 2011 (last of plantings completed in April)			

Table 2. Project Activity and Reporting History Sink Hole Creek Mitigation Project-NCEEP Project #92663						
November-December 2010 (Geomorphic Monitoring)						
Year 1 Monitoring	November 2011	April 2012				
Year 2 Monitoring						
Year 3 Monitoring	Year 3 Monitoring					
Year 4 Monitoring						
Year 5 Monitoring						

Table 3. Project Contacts Table Sink Hole Creek Mitigation Project-NCEEP Project #92663							
Designer	Designer						
Michael Baker Engineering, Inc.	797 Haywood Rd Suite 201, Asheville, NC 28806 Contact: Micky Clemmons, Tel. 828.350.1408 x2002						
Construction Contractor							
River Works, Inc.	8000 Regency Parkway, Suite 200, Cary, NC 27511 <u>Contact:</u> Will Pedersen, Tel. 919.459.9001						
Planting & Seeding Contractor							
River Works, Inc.	8000 Regency Parkway, Suite 200, Cary, NC 27511 <u>Contact:</u> George Morris, Tel. 919.459.9001						
Seed Mix Sources	Green Resources						
Nursery Stock Suppliers	Arborgen and Hillis Nursery						
Monitoring							
Michael Baker Engineering, Inc.	797 Haywood Rd Suite 201, Asheville, NC 28806 <u>Contact:</u> Carmen McIntyre, Tel. 828.350.1408 x2010						

Table 4. Project Background Table Sink Hole Creek Mitigation Project-NCEEP Project #92663					
Project County	Mitchell County, NC				
Physiograhic Region	Blue Ridge				
Ecoregion	Blue Ridge Mountains-Southern Crystalline Ridges and Mountains				
Project River Basin	French Broad				
USGS HUC for Project	6010108040010				
NCDWQ Sub-basin for Project	04-03-06				
Within extent of EEP Watershed Plan?	In a TLW (French Broad River Basin Priorities Report-2009)				
WRC Class	Cold Water				
NCDWQ classification	Sink Hole-C; Tr, UT1-n/a UT2-n/a, UT3-n/a				
% of Project Easement Fenced or Demarcated	100% (post-construction)				
Beaver Activity Observed During Design Phase?	No				
Drainage Area (Square Miles)					

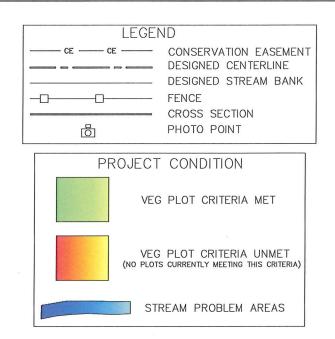
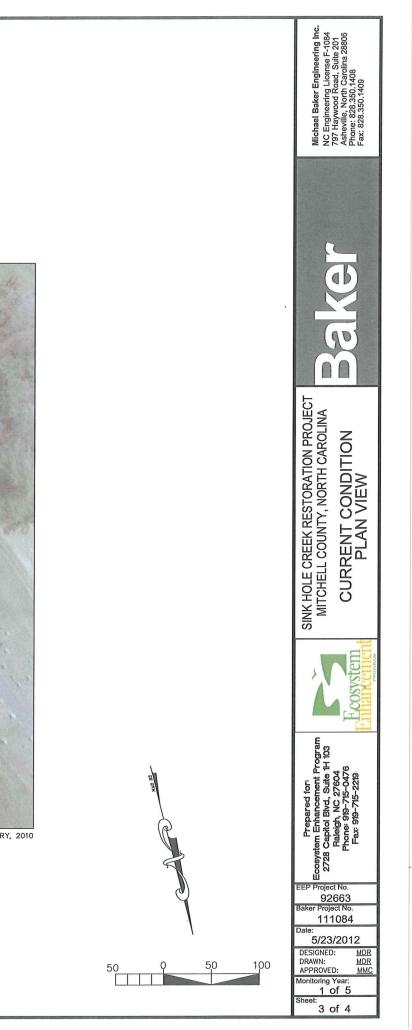
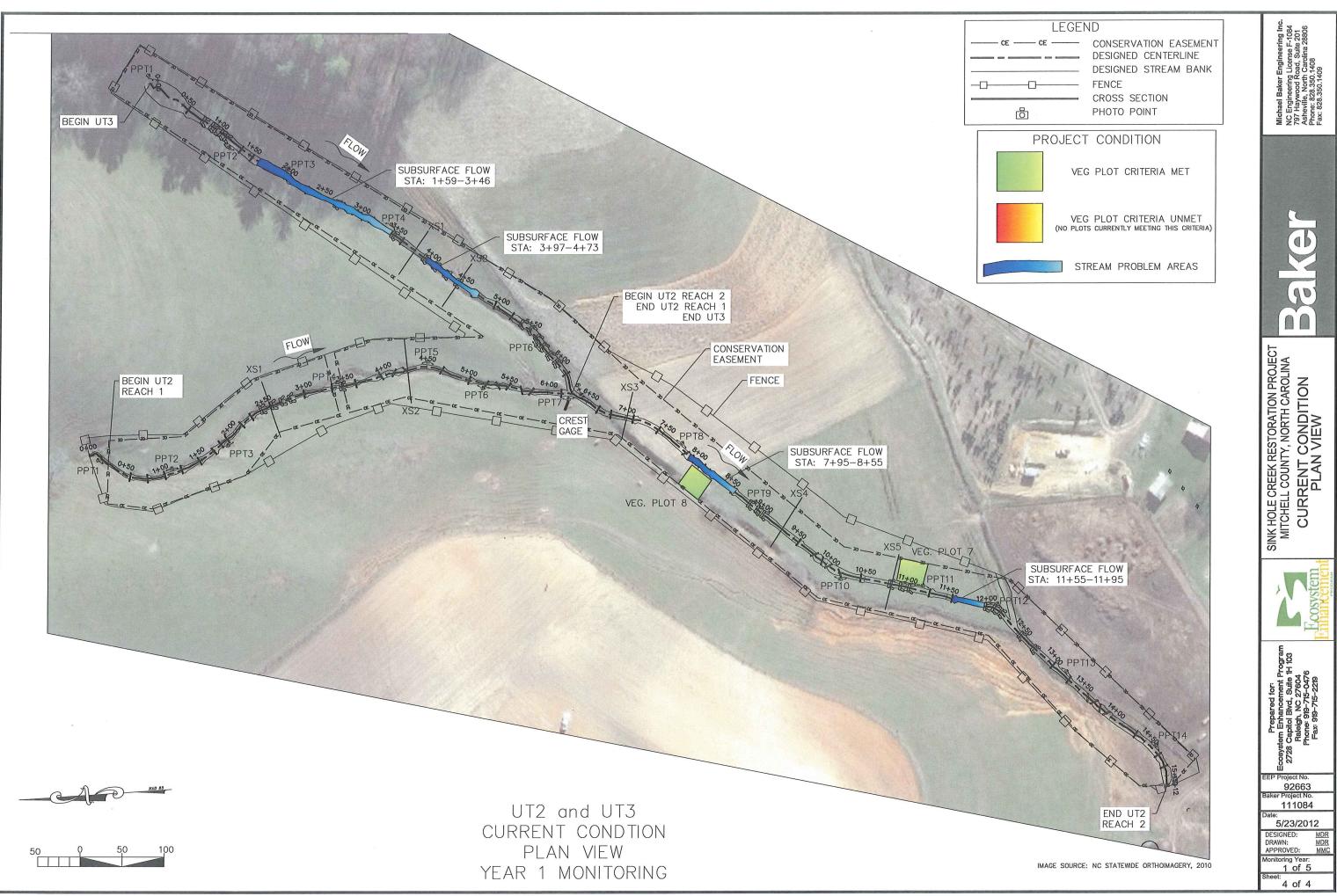

Table 4. Project Background Table	
Sink Hole Creek Mitigation Project-NCEEP Project #	
Sink Hole Creek Reach 1	.72 mi ²
Sink Hole Creek Reach 2	.84 mi ²
UT1Reach 1	.07 mi ²
UT1 Reach2	.09 mi ²
UT2 Reach 1	.02 mi ²
UT2 Reach 2	.08 mi ²
UT3	.02 mi ²
Stream Order	Sink Hole-2nd , UT1-1st, UT2-zero order, UT3-zero order
Restored Length	
Sink Hole Creek Reach 1	1,019 LF
Sink Hole Creek Reach 2	1,073 LF
UT1Reach 1	1,076 LF
UT1Reach 2	489 LF
UT2 Reach 1	596 LF
UT2 Reach 2	885 LF
UT3	641 LF
Perennial or Intermittent	Perennial except Reach 1 of UT1 (intermittent)
Watershed Type	Rural (Predominantly Forested)
Watershed LULC Distribution (Percent area)	
Forest	66%
Shrub	0.4%
Pasture/Crops	28%
Developed Open Space	6%
Drainage Impervious Cover Estimate (%)	<10%
NCDWQ AU/Index #	7-2-56
303d Listed / Upstream of 303d Listed Segment	No/ No
Reasons for 303d Listing or Stressor	-
Total Acreage of Easement	9.46
Total Vegetated Acreage w/in Easement	n/a (Easement vegetated with exception of stream channel)
Total Planted Acreage within the Easement	~9.46 Acres
Rosgen Classification (Pre-existing)	
Sink Hole Creek Reach 1	Eb/Cb
Sink Hole Creek Reach 2	G/Eb
UT1 Reach2	Cb/B
UT2 Reach 1	Aa ⁺
UT2 Reach 2	А
UT3	А
Rosgen Classification of As-built	
Sink Hole Creek Reach 1	Cb,Eb
	00,10

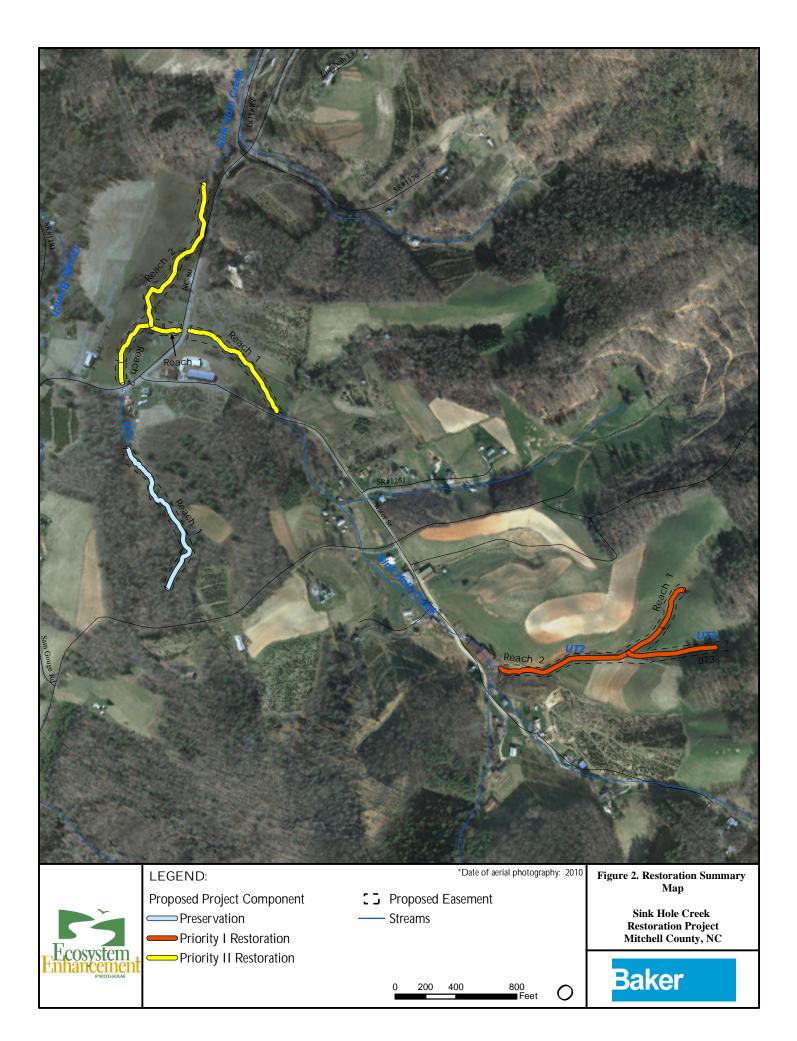
Table 4. Project Background Table Sink Hole Creek Mitigation Project-NCEEP Project #92663					
UT1 Reach2	В				
UT2 Reach 1	Aa+,B				
UT2 Reach 2	A,B				
UT3	Aa+,B				
Valley Type	Ш				
Valley Slope	.02803 (Sink Hole), .028 (UT1), .1055 (UT2), .1 (UT3)				
Trout Waters Designation	Yes (Supporting Waters, Trib. to designated TW)				
Species of Concern	No				

1.4 Monitoring Plan View

The current conditions plan view depicts the monitoring features for the Sink Hole Creek Mitigation Project. The plan set also provides call outs at locations where stream and vegetation problem areas are present. With the exception of a few areas on UT2 and UT3 where the stream goes subsurface temporarily, there were no additional problems present. Figure 2 illustrates the project as it is delineated by reach.







UT1 CURRENT CONDTION PLAN VIEW YEAR 1 MONITORING

2.0 PROJECT CONDITION AND MONITORING RESULTS

The five-year monitoring plan for the Sink Hole Creek mitigation project includes criteria to evaluate the success of the vegetation and stream components of the project. The specific locations of vegetation plots, permanent cross-sections, reference photo stations and crest gauges are shown on the Year 1monitoring plan sheets submitted with this report.

2.1 Vegetation Assessment

2.1.1 Vegetation

Successful restoration of the vegetation on a site is dependent upon hydrologic restoration, active planting of preferred canopy species, and volunteer regeneration of the native plant community. In order to determine if the criteria are achieved, eight (8) vegetation monitoring quadrants were installed across the restoration site. The size of individual quadrants vary from 100 square meters for tree species to 1 square meter for herbaceous vegetation. Level 1 CVS vegetation monitoring will occur in spring, after leaf-out has occurred, or in the fall prior to leaf fall. At the end of the first growing season during baseline surveys, species composition, density, and survival were evaluated. Individual quadrant data provided during subsequent monitoring events will include diameter, height, density, and coverage quantities. Relative values will be calculated, and importance values will be determined. Individual seedlings will be marked to ensure that they can be found in succeeding monitoring years. Mortality will be determined from the difference between the previous year's living, planted seedlings and the current year's living, planted seedlings.

Photographs are used to visually document vegetation success in sample plots. Reference photos of tree and herbaceous condition within plots are taken at least once per year. Photos of the plots are included in Appendix A of this report.

The interim measure of vegetative success for the site is the survival of at least 320, 3-year old, planted trees per acre at the end of the Year 3 monitoring period. The final vegetative success criteria is the survival of 260, 5-year old, planted trees per acre at the end of the Year 5 monitoring period. If the measurement of vegetative density proves to be inadequate for assessing plant community health, additional plant community indices may be incorporated into the vegetation monitoring plan as requested by the NCEEP.

Temporary seeding applied to streambanks beneath the erosion matting sprouted within two weeks of application and has provided excellent ground coverage. Live stakes and bare root trees planted are also flourishing and will increasingly contribute to streambank stability. Bare-root trees were planted throughout the conservation easement with the exception of the preservation reach. A minimum 30-foot buffer was established along all restored stream reaches. In general, bare-root vegetation was planted at a target density of 680 stems per acre, in an 8-foot by 8-foot grid pattern. Planting of bare-root trees was completed in the winter of 2010-2011. Species planted are listed below.

Sink Hole Creek Mitigation Project-NCEEP Project #92663						
Common Name	Scientific Name	% Planted by Species	Planting Density	Wetness Tolerance		
	Riparian Buffer Pla					
Trees Overstory						
Sycamore	Platanus occidentalis	8	54	FACW-		
River Birch	Betula nigra	7	48	FACW		
White Oak	Quercus alba	5	34	FACU		
Red Maple	Acer rubrum	10	68	FAC		
Tulip Poplar	Liriodendron tulipifera	5	34	FAC		
Yellow Birch	Betula alleghaniensis (lutea)	5	34	FACU+		
Black (Sweet) Birch	Betula lenta	5	34	FACU		
Northern Red Oak	Quercus rubra	5	34	FACU		
Sugar Maple	Acer saccharum	5	34	FACU-		
Mockernut Hickory	Carya alba (tomentosa)	3	20	N/A		
Scarlet Oak	Quercus coccinea	2	14	N/A		
Trees Understory				1		
Black Willow	Salix nigra	4	27	OBL		
Ironwood	Carpinus caroliniana	7	48	FAC		
Witch Hazel	Hamamelis virginiana	4	27	FACU		
Sourwood	Oxydendrum arboreum	7	48	FACU		
Flowering Dogwood	Cornus florida	6	41	FACU		
Rhododendron	Rhododendron maximum	7	48	FAC-		
Tag Alder	Alnus serrulata	10	68			
Redbud	Cercis canadensis	6	41	FACU		
Shrubs						
Rivercane (giant cane)	Arundinaria gigantea	15	102	FACW		
Spicebush	Lindera benzoin	15	102	FACW		
Deerberry	Vaccinium stamineum	10	68	FACU		
Eastern Sweetshrub, Sweetshrub	Calycanthus floridus, Calycanthus spp.	10	68	FACU		
Sweetpepperbush	Clethra spp.	15	102	N/A		
Winterberry	Ilex verticillata	10	68	FACW		
Virginia Sweetspire	Itea virginica	15	102	FACW+		
Chokeberry	Photinia	5	34	N/A		
Alternate Species						
Blight-resistant American Chestnut	Castanea dentata	N/A		N/A		

Table 5. Riparian Buffer Plantings							
Sink Hole Creek Mitigation Project-NCEEP Project #92663							
Common Name	Scientific Name	% Planted by Species	Planting Density	Wetness Tolerance			
Dog Hobble	Leucothoe fontanesiana (axilarris var. editorum)	N/A		N/A			
Mountain Laurel	Kalmia latifolia	N/A		FACU			
American Hazelnut	Corylus americana	N/A		FACU			
Blue Ridge Blueberry	Vaccinium pallidum	N/A		N/A			
	Riparian Livestake I	Plantings					
Ninebark	Physocarpus opulifolius	10	68	FAC-			
Elderberry	Sambucus canadensis	20	136	FACW-			
Buttonbush	Cephalanthus occidentalis	10	68	OBL			
Silky Willow	Salix sericea	35	238	OBL			
Silky DogwoodCornus amomum25170FACW+							
1	may change due to refinement or on planting schedule of 680 stems	•	-	0 0			

2.1.2 Soil Data

Table 6. Preliminary Soil Data					
Sink Hole Creek Mitigation Project-NCl	EEP Project #	92663			
Dominant Soil Series and Characteristics	Bandana/ D	illsboro/Saun	ook-Thunder	/Dellwood-R	eddies
	Depth (in.)	% Clay	K Factor	T Factor	% OM
Sink Hole Creek Reach 1	>80"	10-20	.15	4	4-10%
Sink Hole Creek Reach 2	>80"	10-20	.15	4	4-10%
UT1Reach 1	~87"	27-35	.1	5	4-10%
UT1 Reach2	>80"	10-20	.15	4	4-8%
UT2 Reach 1	>80"	7-20/ 15- 28	.05/.02	5	4-10%/ 6-14%
UT2 Reach 2	>80"	5-15/ 5-18	.05	3	4-8%
UT3	>80"	7-20/15- 28	.05/.02	5	4-10%/ 6-14%

2.1.3 Vegetative Problem Areas

Currently, there are no vegetative problem areas.

2.1.4 Stem Counts

The mitigation plan for the Sink Hole Creek Site specifies that the number of quadrants required will be based on the species/area curve method, as described in NCEEP monitoring guidance documents. The size of individual quadrants is 100 square meters for woody tree species, and 1 square meter for herbaceous vegetation. A total of eight vegetation plots, each 10 by 10 meters or 5 by 20 meters in size, were established across the restored site.

2.1.4.1.1 Results

Table 7 in Appendix A presents information on the stem counts for each of the vegetation monitoring plots. Data from the Year 1 monitoring event showed a range of 480-840 planted stems per acre, with approximately 88% of the stems showing no signs of damage. The average density of planted bare root stems, based on data collected from the eight monitoring plots during Year 1 monitoring, is 675 stems per acre which indicates that the Site is on track for meeting the minimum success interim criteria of 320 trees per acre by the end of Year 3 and the final success criteria of 260 trees per acre by the end of Year 5. The locations of the vegetation plots are shown on the Year 1 monitoring plan sheets.

As shown in Table 8 (Appendix A), no woody or herbaceous vegetation problem areas were identified during Year 1 monitoring. Although the density of herbaceous cover varies across the site, conditions observed on-site during the Year 1 monitoring survey found ground cover in the easement area to be sufficient for aiding in site stabilization. Declines in various tree and shrub species planted that are indicated in Table 7 are not all due to actual stem loss. When vegetation plots were initially established and vegetation identified, it was still winter, which made it difficult to properly identify vegetation planted. As a result, some species originally reported have shown a decline based on re-identification of stems that occurred during Year 1 monitoring. In other instances, reported stem losses were due to damage brought about by animals, localized ponding after storm events, and competition with dense herbaceous cover. Survival rates of planted woody stems in the vegetation plots indicate that plantings across the easement area are of sufficient density to meet regulatory requirements, as well as the site stabilization and habitat enhancement goals originally set forth in the mitigation plan. A photo log of the vegetation plots is provided in Appendix A.

2.2 Stream Assessment

2.2.1 Morphologic Parameters and Channel Stability

Geomorphic monitoring of restored stream reaches is being conducted over a five year period to evaluate the effectiveness of the restoration practices installed. Monitored stream parameters include channel dimension (cross-sections), profile (longitudinal survey), pattern (to a lesser degree for reasons noted below), bed composition, bank stability, bankfull flows, and stability of reference sites documented by photographs. Crest gauges, as well as high flow marks, will be used to document the occurrence of bankfull events. The methods used and any related success criteria are described below for each parameter. To monitor stream success criteria, fifteen permanent cross-sections, four longitudinal profile sections and two crest gauges were installed. Detailed channel morphology was surveyed with a total station by Baker under the direction of Will Kent, PLS; survey data is georeferenced.

2.2.1.1 Dimension

Fifteen permanent cross-sections were installed to help evaluate the success of the mitigation project. Permanent cross-sections were established throughout the project site as follows: six cross-sections were located on Sink Hole Creek, two cross-sections were located on both UT1 and UT3 and five cross-sections were located on UT2. Cross-sections selected for monitoring were located in representative riffle and pool reaches and each cross-section was marked on both banks with permanent pins to establish the exact transect used. A common benchmark will be used for cross-sections and consistently referenced to facilitate comparison of year-to-year data. The cross-sectional surveys will include points measured at breaks in slope, including top of bank, bankfull, inner berm, edge of water, and thalweg, if the features are present. Riffle cross-sections will be classified using the Rosgen Stream Classification System.

There should be little change in the as-built cross-sections. If changes do take place, they will be evaluated to determine if they represent a movement toward a more unstable condition (e.g., down-cutting or erosion) or a movement toward increased stability (e.g., settling, vegetative changes, deposition along the banks, or decrease in width/depth ratio).

2.2.1.1.1 Results

As-built cross-section monitoring data for stream stability was collected in November and December 2010. The fifteen permanent cross-sections along the restored channels were resurveyed in November 2011 to document stream dimension for Monitoring Year 1. Cross-sectional data is presented in Appendix B and the location of cross-sections is shown on the plan sheets submitted with this report.

The cross-sections show that there has been little to no adjustment to stream dimension across the project reaches since construction. What adjustment has occurred has primarily been observed in riffle cross-sections that are exhibiting signs of narrowing. Based on field observation, this narrowing can be attributed to herbaceous vegetation becoming well established over the first year. At this time, cross-sectional measurements do not indicate any streambank or channel stability issues.

2.2.1.2 Pattern and Longitudinal Profile

Longitudinal profiles for Year 1 were surveyed during November 2011; profiles of the various project reaches are provided in Appendix B. A longitudinal profile was conducted for the entire project length on Sink Hole Creek, UT2, UT3 and Reach 2 of UT1. Longitudinal profiles will be replicated annually during the five year monitoring period.

Measurements taken along longitudinal profiles include thalweg, water surface, and the left and right top of bank. The pools should remain relatively deep with flat water surface slopes, and the riffles should remain steeper and shallower than the pools. Bed form observations should be consistent with those observed for channels of the design stream type. Profile data collected reflect stable channel bedform and a diverse range of riffle and pool complexes.

All measurements were taken at the head of each feature (e.g., riffle, run, pool, glide) and the maximum pool depth. Elevations of grade control structures were also included in the longitudinal profiles surveyed. Surveys were tied to a permanent benchmark. Although pattern adjustments were made in each reach for channel alignment considerations such as following the low point of the valley, pattern adjustments were not made with the intent to increase sinuosity. Sink Hole Creek and its tributaries are A and B-type streams primarily characterized by step-pool sequences. Consequently, pattern information is not provided in Appendix B as the parameters present are generally associated with meandering, riffle-pool channels. However, as the site is monitored, reaches will be evaluated for significant changes in pattern. Any changes that occur which warrants repair will be discussed in future monitoring reports.

2.2.1.2.1 Results

The longitudinal profiles show that the bed features are also stable across the project site. As noted in the Stream Reach Morphology Data Tables in Appendix B (Tables 13 and 14), riffle and pool characteristics do not appear to have changed much and are acceptable when compared to reference reach and design data provided for the project reaches. Minor changes in the profiles for both Sink Hole Creek and UT1 point towards a slight increase in riffle length and pool spacing. Given the location of these project reaches in the valley and the spacing of structures in these streams, it is expected that the profiles will display little change over the course of the monitoring period.

The Year 1 longitudinal profiles for Reach 1 of UT2 and UT3 continue to exhibit profile adjustments. These appear to be lingering adjustments from a heavy downpour that occurred in July 2010 and resulted in a brief flash flood event in the project area approximately one month after the construction of these channels. Head-water systems are naturally degradational and the reconfiguration of bedform following extreme events (such as the August 2010 event in which over 4" of rain fell within one hour) is a natural occurrence. Adjustments are not of concern, unless they result in a loss of grade control in the channel, or severe erosion that cannot be repaired by natural vegetation processes. The results of that event, which was also noted in the Baseline Monitoring Report do not appear to have threatened the overall stability of these channels in the first year following construction of the project and do not present a concern at this time. Although the adjustments, which consist of shifted riffle and toe protection material and more closely spaced pools, are still present. However, closely spaced grade control structures have helped maintain the overall profile desired, no additional adjustments were noted, and there was no significant bank erosion observed because of the channel profile adjustments.

Although no areas of instability were noted in the project area during Year 1 monitoring, there are intermittent spaces on UT2 and UT3 where surface flow was lost. This is not completely unexpected given that stable, non-restored Aa to B-type streams are prone to such tendencies. Unnamed tributary 2 and UT3 are both Aa to B-type channels as they drain toward Sink Hole Creek. The stationing at which the stream goes subsurface is provided in Table 10 in Appendix B.

2.2.1.3 Substrate and Sediment Transport

Bed material analysis consisted of pebble counts being taken in the same constructed riffle each year during annual geomorphic surveys of the project site. These samples, combined with evidence provided by changes in cross-sectional and profile data will reveal changes in sediment gradation that occur over time as the stream adjusts to upstream sediment loads. Significant changes in sediment gradation will be evaluated with respect to stream stability and watershed changes.

2.2.1.3.1 Results

For this project, a pebble count was collected on Reaches 1 and 2 of Sink Hole Creek. As noted in pebble count exhibits in Appendix B, the pebble count for Reach 1 of Sink Hole indicates some coarsening in the bedload for the d50 - d95 substrate component. The pebble count taken in Reach 2 shows a similar trend. Visual observations of Sink Hole Creek and its tributaries and a review of pebble count data collected did not yield any signs that sediment transport functions have been hampered by the mitigation project; specifically, no significant areas of aggradation or degradation within the project area were observed during the Year 1 monitoring survey. In fact, the pebble count data shows that there is a coarsening of the stream bed which is an indication that the stream is moving fines through the system and larger pebbles are making up a greater percentage of the bed material.

2.2.2 Hydrology

2.2.2.1 Streams

The occurrence of bankfull events within the monitoring period is being documented by the use of crest gauges and photographs. Crest gauges were installed on the floodplain to measure flows at or above the bankfull elevation. One crest gauge was placed near the confluence of UT2 and UT3 (approximately station 6+25 of UT2 on plan sheets), while another gauge was set up near the end of the project area on Reach 2 of Sink Hole Creek (approximately station 18+50 on plan sheets). The crest gauges will record the highest

watermark between site visits and will be checked at each site visit to determine if a bankfull event has occurred. Photographs will be used to document the occurrence of debris lines and sediment deposition on the floodplain during monitoring site visits.

Two bankfull flow events must be documented on each crest gauge within the 5-year monitoring period. The two bankfull events must occur in separate years; otherwise, the stream monitoring will continue until two bankfull events have been documented in separate years.

2.2.2.1.1 Results

During the spring of the Year 1 monitoring period, the site was found to have had at least two bankfull events based on crest gauge readings obtained on UT2 and Reach 2 of Sink Hole Creek. Information on these events is provided in Table 9 of Appendix B.

2.2.3 Photographic Documentation of Site

Photographs will be used to document restoration success visually. Reference stations were photographed during the as-built survey; this will be repeated for at least five years following construction. Reference photos are taken once a year, from a height of approximately five to six feet. Permanent markers will ensure that the same locations (and view directions) are utilized during each monitoring period. Selected site photographs are shown in Appendix B.

2.2.3.1 Lateral Reference Photos

Reference photo transects were taken of the right and left banks at each permanent crosssection. A survey tape was captured in most photographs which represents the cross-section line located perpendicular to the channel flow. The water line was located in the lower edge of the frame in order to document bank and riparian conditions. Photographers will make an effort to consistently maintain the same area in each photo over time.

2.2.3.2 Structure Photos

Photographs of primary grade control structures (i.e. vanes and weirs), along the restored streams are included within the photographs taken at reference photo stations. Photographers will make every effort to consistently maintain the same area in each photo over time.

Lateral and structure photographs are used to evaluate channel aggradation or degradation, bank erosion, success of riparian vegetation, structure function and stability, and a subjective judgment of the effectiveness of erosion control measure. Lateral photos should not indicate excessive erosion or degradation of the banks. A series of photos over time should indicate successive maturation of riparian vegetation and consistent structure function.

2.2.4 Stream Stability Assessment

In-stream structures installed within the restored streams included constructed riffles, log drops, log sequences, and boulder steps. The Year 1 visual observations of these structures indicate that little or no changes have occurred since the baseline survey was performed; structures are functioning as designed and are holding their elevation and grade. Structures located on UT2 and UT3 have not been affected by the minor changes in profile that occurred as a result of a flood event that occurred during the construction period. Structures on the mainstem as well as UT1 are also stable. Frequent spacing of log drops, log sequences and boulder drops have greatly enhanced bedform diversity as well as promoting more stable A and B-type channels. The Categorical Stream Feature Visual Stability Assessment and Visual Morphological Stability Assessment tables in Appendix B (Tables 11 and 12), summarize the condition of project structures.

Quantitative reference reach and design data used to determine the restoration approach, as built data, as well as Year 1 monitoring data are summarized in Tables 13 and 14 of Appendix B.

2.3 Areas of Concern

At this time, no areas of concern were noted in the project reaches. The steeper tributaries where flow tends to be intermittent in certain segments will continue to be monitored. Baker will notify the EEP of steps taken to encourage continuous surface flow if channel conditions do not improve by the end of the second monitoring year.

3.0 REFERENCES

Leopold, L.B., M. Wolman, and J. Miller, 1964. "Fluvial Processes in Geomorphology." W.H. Freeman, San Franciso, CA.

Peet, R.K., T.R. Wentworth and P.S. White. 1998. "A flexible, multipurpose method for recording vegetation composition and structure." Castanea 63:262-274.

APPENDIX A

VEGETATION RAW DATA

1. VEGETATION SURVEY DATA TABLES

2. VEGETATION MONITORING PLOT PHOTOS

Table 7. Stem Count Arran	•			lr gelgu'l	Uwt xkx	cnTcvg	u +									
Sink Hole Creek Mitigation Project-#92663		3	Ple	ots				As-built	MY 1	MY 2	MY 3	MY 4	MY 5			
Tree Species	1	2	3	4	5	6	7	8	Totals			Totals			Survival %	Probable Cause
Acer rubrum		1	2	1		1	2		4	7			1		100%	
Acer saccahrum		1							1	1					100%	
Asimina triloba								5	0	5					100%	
Betula alleghaniensis	6								6	6					100%	
Betula lenta		3	1	1					8	5					63%	Natural causes (animal)
Betula nigra	1	2	5	4	3		3	1	32	19					59%	Natural causes (animal)
Carya alba		2	1	1		1			12	5					42%	Re-identification
Liriodendron tulipfera	1	1	1	3	1		1		10	8					80%	
Physocarpus opulifolius	1								1	1					100%	
Platanus occidentalis		1			2	2		2	8	7					88%	
Quercus alba	1								1	1					100%	
Quercus muehlenbergii		1							0	1					100%	
Quercus rubra	1	1	4	2	3	5	3	1	13	20					100%	
Shrub Species																
Alnus serrulata	1	4		3		2			6	10					100%	
Calycanthus								2	2	0					0%	Dense herbaceous cover
Cercis canadensis		1	3	1	5	2	7		33	19					58%	Herbaceous cover; isolated ponding in pockets
Cornus florida		1	2						1	3					100%	
Hamamelis virginiana									1	0					0%	Natural causes (animal, weather, etc.)
Itea virginica		1							0	1					100%	
Lindera benzoin			1		1			3	0	5					100%	
Salix nigra						1			0	1					100%	
Vaccinium stamineum			1		2				3	3					100%	
Viburnum prunifolium					2	1		2	7	5					71%	Natural causes (animal)
Stems/plot	12	20	21	16	19	15	16	16							17	
Stems/acre Year 1	480	800	840	640	760	600	640	640							675	

Table 7b. Stem Count Arra	0 1	cpvgf 'XuØVqv	cn⊦																											
Sink Hole Creek Mitigation	Project-#92663		<u> </u>					Cu	rrent	Data	MV	1 201	(1)						1				Annu	al Mea	nc Do	Dlot				
			Pl	ot 1	Pla	ot 2	Pla	ot 3	Plo		Plo	-	Plo	ot 6	Plo	ot 7	Pla	ot 8	Curren	t Mean	AB(2	2010)		$\frac{1}{2}(2012)$			MY4	(2014	MY5	(2015)
Tree Species	Common Name	Туре	P	T	P	T	P	T	P	T	P	T	P	Т	P	T	P	Т	P	T	P P	T	P	T	P	(201) T	P	(2014 T	P	(2013) T
	Red Maple	Tree			1	1	2	2	1	1			1	1	2	2			1.4	1.4	1.3	1.3								
Acer saccahrum	Sugar Maple	Tree			1	1													1.0	1.0	1	1								
Asimina triloba	Paw Paw	Tree															5	5	5.0	5.0										
Betula alleghaniensis	Yellow Birch	Tree	6	6															6.0	6.0	3	3								
Betula lenta	Sweet Birch	Tree			3	3	1	1	1	1									1.7	1.7	2	2								
Betula nigra	River Birch	Tree	1	1	2	2	5	5	5	4	4	3			3	3	1	1	3.0	2.7	4	4								
Carya alba	Mockernut Hickory	Tree			2	2	1	1	2	1	2	0	2	0	1	0			1.7	0.7	1.7	1.7								
Liriodendron tulipfera	Tulip Poplar	Tree	1	1	1	1	1	1	3	3	1	1	1	0	2	1			1.4	1.1	1.4	1.4								
Physocarpus opulifolius	Ninebark	Tree	1	1															1.0	1.0	1	1								
Platanus occidentalis	Sycamore	Tree					1	1			3	2	2	2			2	2	2.0	1.8	2	2								
Quercus alba	White Oak	Tree	1	1															1.0	1.0	1	1								
Quercus muehlenbergii	Chinkapin Oak	Tree			1	1													1.0	1.0										
Quercus rubra	Red Oak	Tree	1	1	1	1	4	4	2	2	3	3	5	5	3	3	1	1	2.5	2.5	1.9	1.9								
Shrub Species																														
Alnus serrulata	Tag Alder	Tree	1	1	4	4			3	3			2	2					2.5	2.5	2	2								
Calycanthus	Sweetshrub	Shrub																			2	2								
Cercis canadensis	Redbud	Tree			1	1	3	3	1	1	5	5	4	2	9	7	1	0	3.1	2.6	4.1	4.1								
Cornus florida	Flowering Dogwood	Tree			1	1	2	2											1.5	1.5	1	1								
Hamamelis virginiana	Witch Hazel	Shrub																			1	1								
Itea virginica	Virginia Sweetspire	Shrub			1	1													1.0	1.0										
Lindera benzoin	Northern Spicebush	Shrub					1	1			1	1					3	3	1.7	1.7										
Salix nigra	Black Willow	Tree											1	1					1.0	1.0										
Vaccinium stamineum	Deerberry	Shrub					1	1			2	2							1.5	1.5	1.5	1.5								
Viburnum prunifolium	Blackhaw	Shrub									2	2	2	1			3	2	2.3	1.7	2.3	2.3								
	Plot	area (acres)	0.	025	0.0	025	0.0)25	0.0	025	0.0	25	0.0)25	0.0)25	0.0)25												
	Sp	becies Count	7	7	12	12	11	11	8	8	9	9	9	7	6	5	7	6	8.6	8.1	8	8								
P=Planted	Plantee	d Stems/Plot	12	12	19	19	22	22	18	16	23	19	20	14	20	16	16	14	18.8	16.5	18.6	18.6								
T=Total	Planted	Stems/Acre	486	486	769	769	890	890	728	647	931	769	809	567	809	647	647	567	759	668	754	754								
Note: Stem mortality is de	noted where the total n	umber of ste	ems fe	or the	curre	ent ye	ar is l	ess th	an the	e num	iber p	lante	ed and	l reco	orded	for e	ach p	lot.												

	Sink Hole Reach 1 (1	019 LF)	
Feature Issue	Station No.	Suspected Cause	Photo Number
Other	N/A	N/A	N/A
Bare Bank	N/A	N/A	N/A
Bare Bench	N/A	N/A	N/A
Bare Flood Plain	N/A	N/A	N/A
Invasive/Exotic Populations	N/A	N/A	N/A
-	Sink Hole Reach 2 (1	,073 LF)	
Feature Issue	Station No.	Suspected Cause	Photo Number
Other	N/A	N/A	N/A
Bare Bank	N/A	N/A	N/A
Bare Bench	N/A	N/A	N/A
Bare Flood Plain	N/A	N/A	N/A
Invasive/Exotic Populations	N/A	N/A	N/A
	UT1 Reach 2 (48	LF)	
Feature Issue	Station No.	Suspected Cause	Photo Number
Other	N/A	N/A	N/A
Bare Bank	N/A	N/A	N/A
Bare Bench	N/A	N/A	N/A
Bare Flood Plain	N/A	N/A	N/A
Invasive/Exotic Populations	N/A	N/A	N/A
	UT2 Reach 1 (59	5 LF)	
Feature Issue	Station No.	Suspected Cause	Photo Number
Other	N/A	N/A	N/A
Bare Bank	N/A	N/A	N/A
Bare Bench	N/A	N/A	N/A
Bare Flood Plain	N/A	N/A	N/A
Invasive/Exotic Populations	N/A	N/A	N/A
	UT2 Reach 2 (88	5 LF)	
Feature Issue	Station No.	Suspected Cause	Photo Number
Other	N/A	N/A	N/A
Bare Bank	N/A	N/A	N/A
Bare Bench	N/A	N/A	N/A
Bare Flood Plain	N/A	N/A	N/A
Invasive/Exotic Populations	N/A	N/A	N/A
	UT3 (641 LF		•
Feature Issue	Station No.	Suspected Cause	Photo Number
Other	N/A	N/A	N/A
Bare Bank	N/A	N/A	N/A
Bare Bench	N/A	N/A	N/A
Bare Flood Plain	N/A	N/A	N/A
Invasive/Exotic Populations	N/A	N/A	N/A

Sink Hole Creek Mitigation Project Photo Log - Vegetation Plot Photo Points (Year 1)

Notes:

- 1. Vegetation plots marked by t-posts at corners; herbaceous plot marked by stake within larger plot.
- 2. Planted vegetation flagged and tagged for future identification.

9/29/2011 Photo 1: Veg Plot 1

9/29/2011 Photo 3: Veg Plot 2

Photo 2: Veg Plot 1: Herbaceous Plot

Photo 4: Veg Plot 2: Herbaceous Plot

9/29/2011 Photo 5: Veg Plot 3

9/29/2011 Photo 6: Veg Plot 3: Herbaceous Plot

9/29/2011 Photo 8: Veg Plot 4: Herbaceous Plot

9/29/2011 Photo 9: Veg Plot 5

9/29/2011 Photo 10: Veg Plot 5: Herbaceous Plot

9/29/2011 Photo 11: Veg Plot 6

9/29/2011 Photo 12: Veg Plot 6: Herbaceous Plot

9/29/2011 Photo 13: Veg Plot 7

9/29/2011 Photo 15: Veg Plot 8

9/29/2011 Photo 14: Veg Plot 7: Herbaceous Plot

9/29/2011 Photo 16: Veg Plot 8: Herbaceous Plot

APPENDIX B

- **1.** HYDROLOGICAL (BANKFULL) VERIFICATIONS (TABLE 9)
- 2. STREAM PROBLEM AREAS (TABLE 10)
- **3. CROSS-SECTION PLOTS WITH ANNUAL OVERLAYS**
- 4. LONGITUDINAL PROFILES WITH ANNUAL OVERLAYS
- 5. CATEGORICAL STREAM FEATURE VISUAL STABILITY ASSESSMENT (TABLE 11)
- 6. VISUAL MORPHOLOGICAL STABILITY ASSESSMENT (TABLE 12)
- 7. STREAM REACH MORPHOLOGY AND HYDRAULIC DATA (TABLE 13)
- 8. CROSS-SECTION MORPHOLOGY AND HYDRAULIC DATA (TABLE 14)
- 9. RIFFLE PEBBLE COUNT SIZE CLASS DISTRIBUTIONS
- **10.** STREAM REFERENCE STATION PHOTO LOGS

	tion of Bankfull or Grea estoration Project-#92663	ter than Bankfull Events 3			
			Gauge Waterr	nark Height (inches)
Date of Data Collection	Date of Event	Method of Data Collection	Sink Hole Cr. Reach 1	Sink Hole Cr. Reach 2	UT2 Reach 1
11/4/2011	Between 6/29/11 and 11/04/11	Gauge measurement.	-	1.97	-
11/4/2011	Between 6/29/11 and 11/04/11	Gauge measurement.	-	7.48	1.8

UT2 Reach 2(885 LF)							
Feature Issue	Station No.	Suspected Cause	Photo Number				
Subsurface flow	7+95 to 8+55; 11+55 to 11+95	Channel is dry from flow going subsurface (probably due to lack of seal behind upstream drop structure). Steepness of channel (Aa+ stream type) likely a factor as well.	N/A ¹				
		UT3 (641 LF)					
Feature Issue	Station No.	Suspected Cause	Photo Number				
Subsurface flow	1+69 to 3+46; 3+70 to 3+92; 3+97 to 4+73	Channel is dry from flow going subsurface in two areas (probably due to lack of seal behind upstream drop structure). Steepness of channel (Aa+ stream type) likely a factor as well.	N/A ¹				

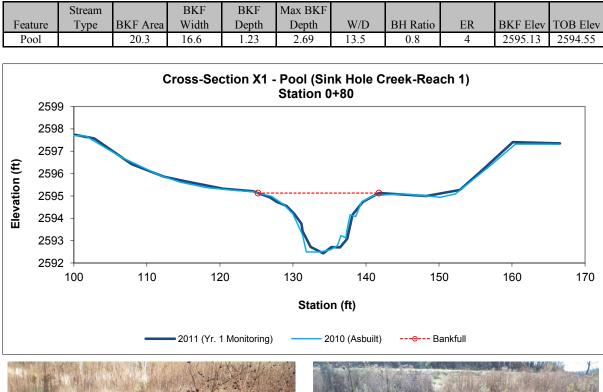


Photo 1: XS-1 facing right bank

Photo 2: XS-1 facing left bank

Photo 3: XS-1 facing upstream

Photo 4: XS-1 facing downstream

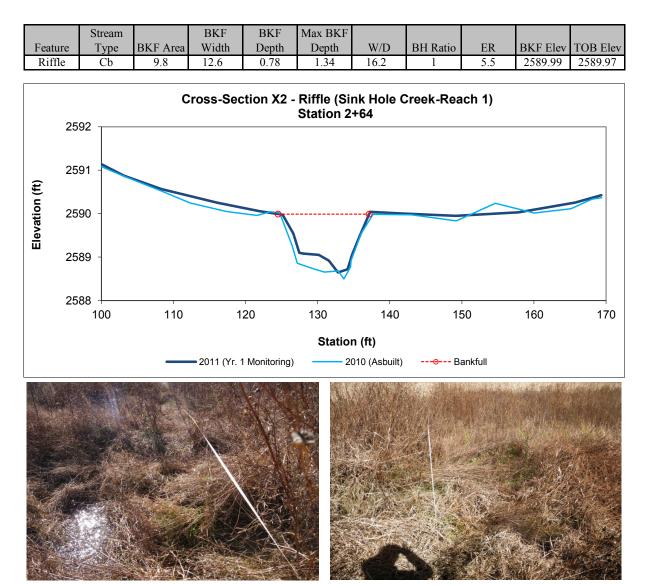


Photo 5: XS-2 facing right bank

Photo 6: XS-2 facing left bank

Photo 7: XS-2 facing upstream

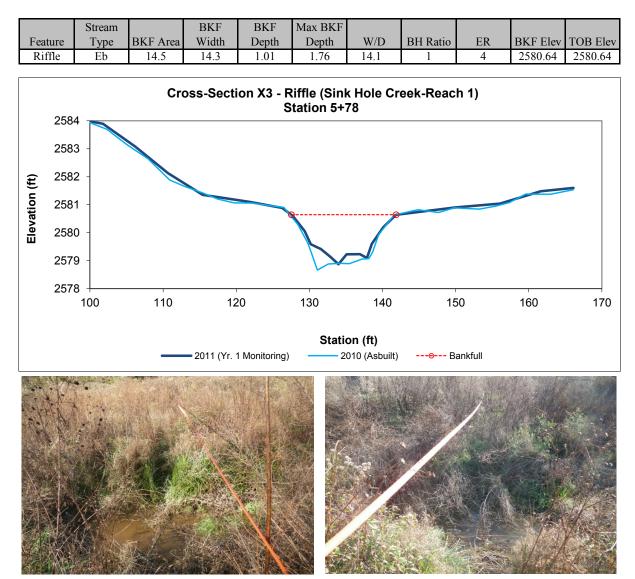


Photo 8: XS-3 facing right bank

Photo 9: XS-3 facing left bank

Photo 10: XS-3 facing upstream

Photo 11: XS-3 facing downstream

Photo 12: XS-4 facing right bank

Photo 13: XS-4 facing left bank

Photo 14: XS-4 facing upstream

Photo 15: XS-4 facing downstream

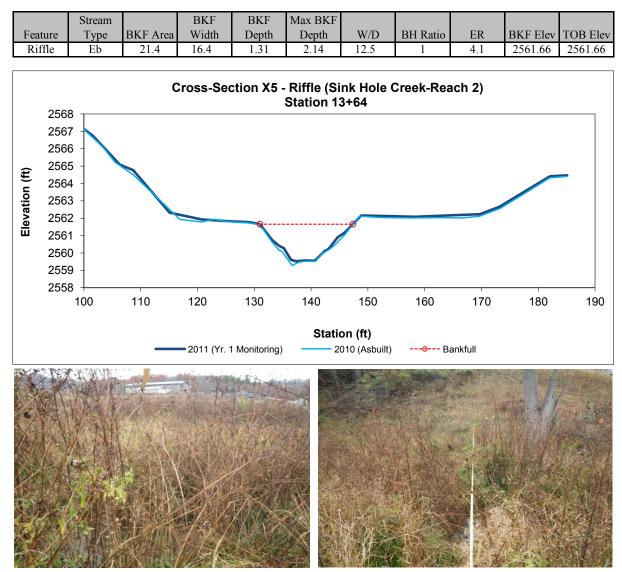


Photo 16: XS-5 facing right bank

Photo 17: XS-5 facing left bank

Photo 18: XS-5 facing upstream

Photo 19: XS-5 facing downstream



Photo 20: XS-6 facing right bank

Photo 21: XS-6 facing left bank

Photo 22: XS-6 facing upstream

Photo 23: XS-6 facing downstream

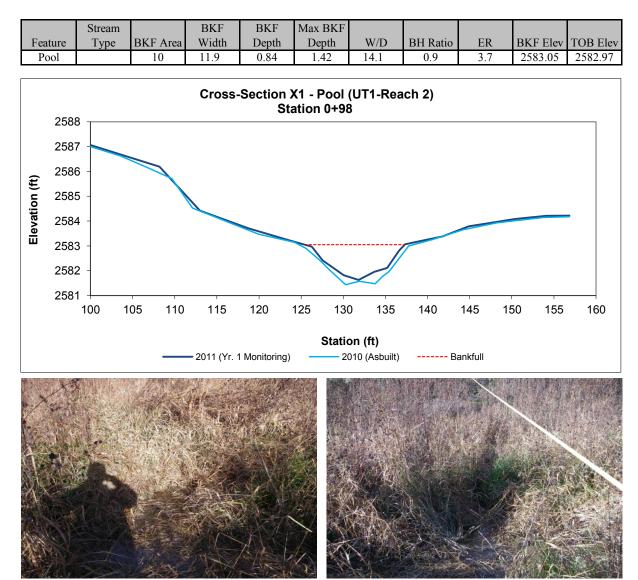


Photo 1: XS-1 facing right bank

Photo 2: XS-1 facing left bank

Photo 3: XS-1 facing upstream

Photo 4: XS-1 facing downstream

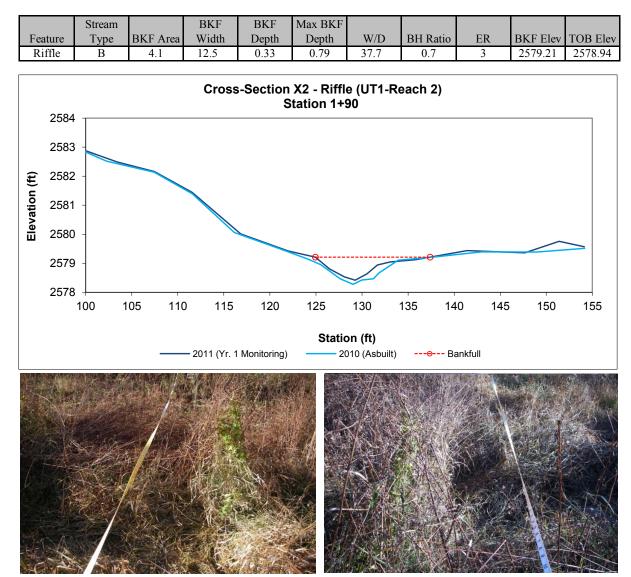


Photo 5: XS-2 facing right bank

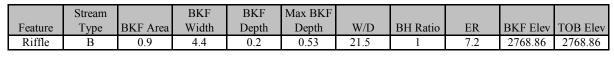

Photo 6: XS-2 facing left bank

Photo 7: XS-2 facing upstream

Photo 8: XS-2 facing downstream

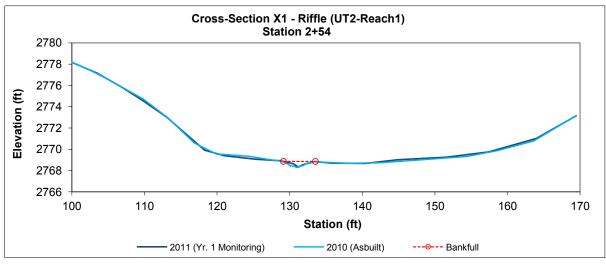


Photo 1: XS-1 facing right bank

Photo 2: XS-1 facing left bank

Photo 3: XS-1 facing upstream

Photo 4: XS-1 facing downstream

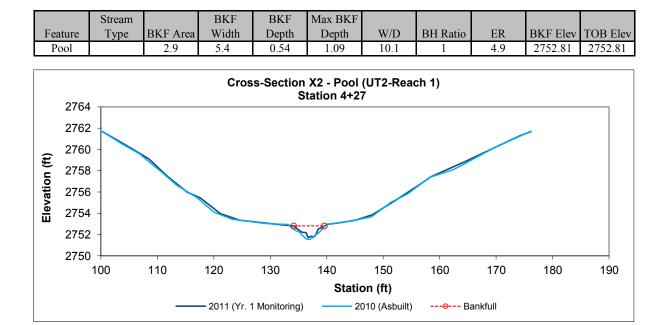


Photo 5: XS-2 facing right bank

Photo 6: XS-2 facing left bank

Photo 7: XS-2 facing upstream

Photo 8: XS-2 facing downstream

	Stream		BKF	BKF	Max BKF					
Feature	Туре	BKF Area	Width	Depth	Depth	W/D	BH Ratio	ER	BKF Elev	TOB Elev
Riffle	А	2.2	5.1	0.43	0.79	11.9	1	6.5	2737.07	2737.07

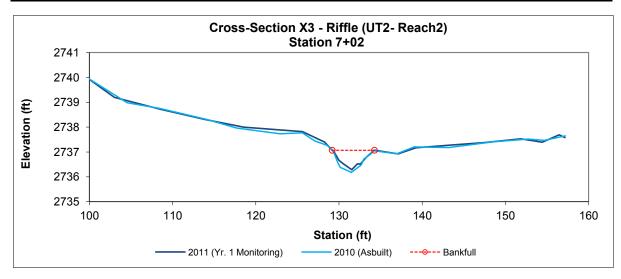


Photo 9: XS-3 facing right bank

Photo 10: XS-3 facing left bank

Photo 11: XS-3 facing upstream

Photo 12: XS-3 facing downstream

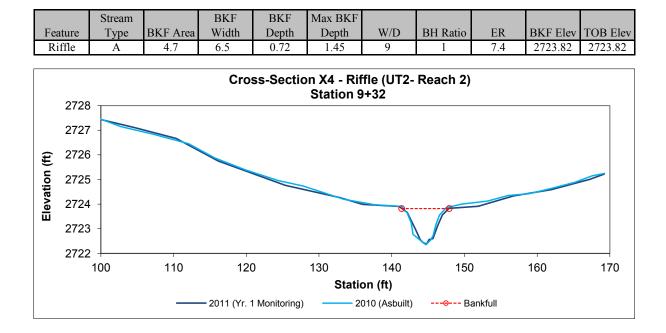


Photo 13: XS-4 facing right bank

Photo 14: XS-4 facing left bank

Photo 15: XS-4 facing upstream

Photo 16: XS-4 facing downstream

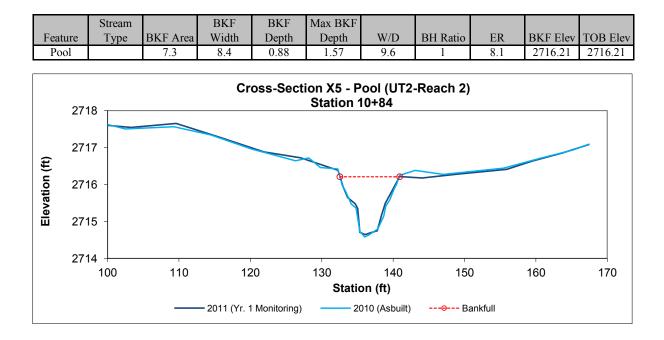


Photo 17: XS-5 facing right bank

Photo 19: XS-5 facing upstream

Photo 18: XS-5 facing left bank

Photo 20: XS-5 facing downstream

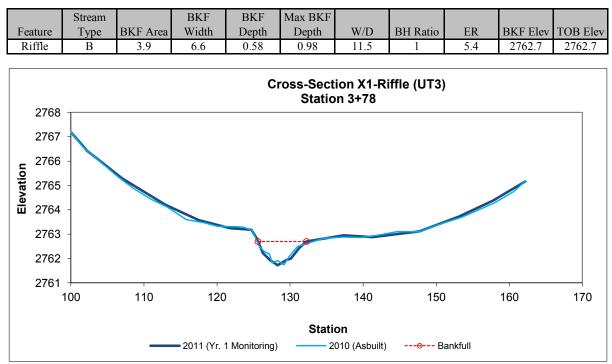


Photo 1: XS-1 facing right bank

Photo 2: XS-1 facing left bank

Photo 3: XS-1 facing upstream

Photo 4: XS-1 facing downstream

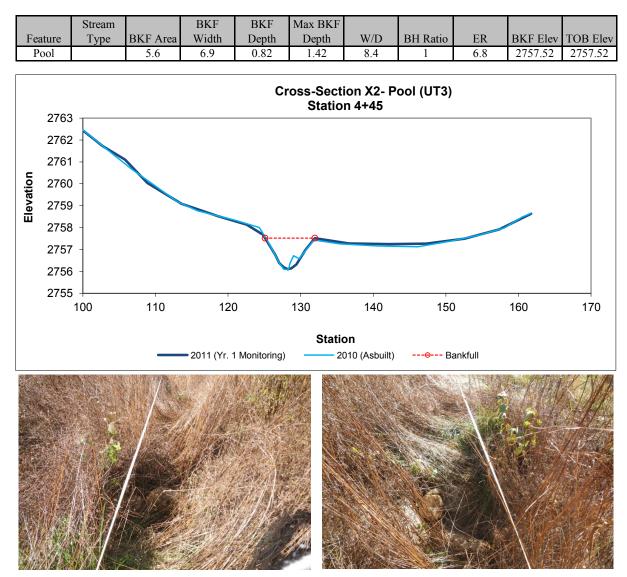
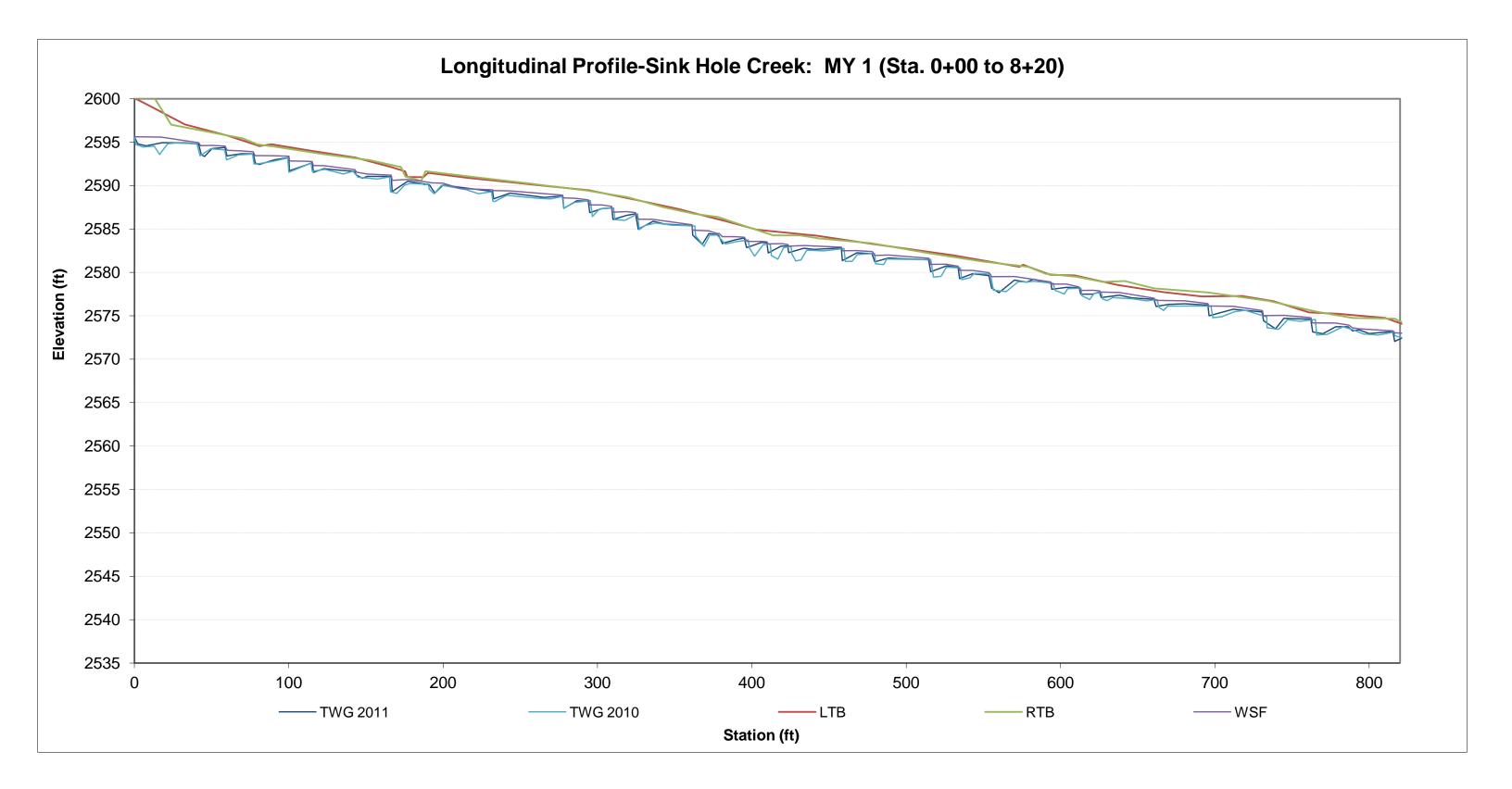
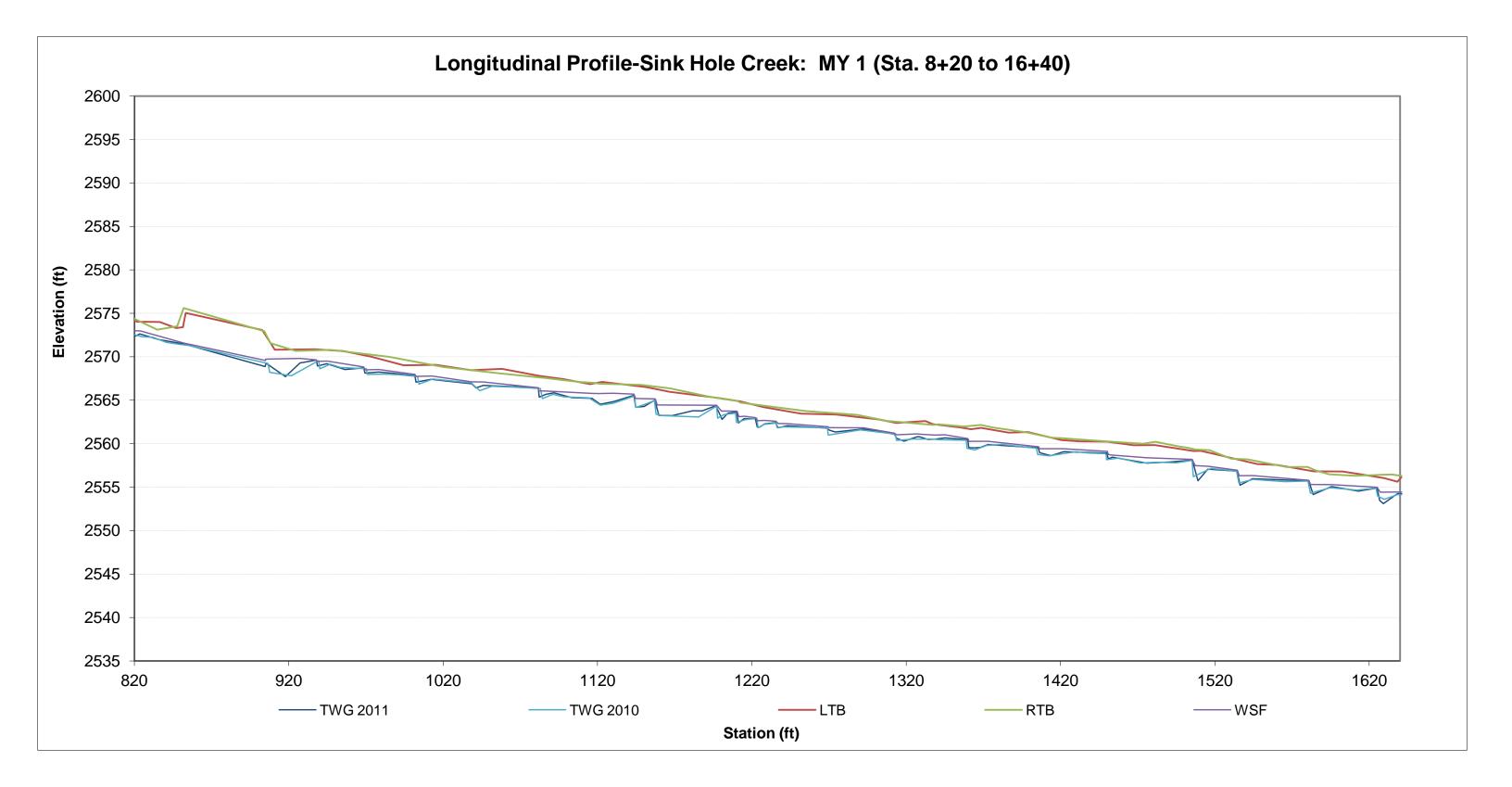
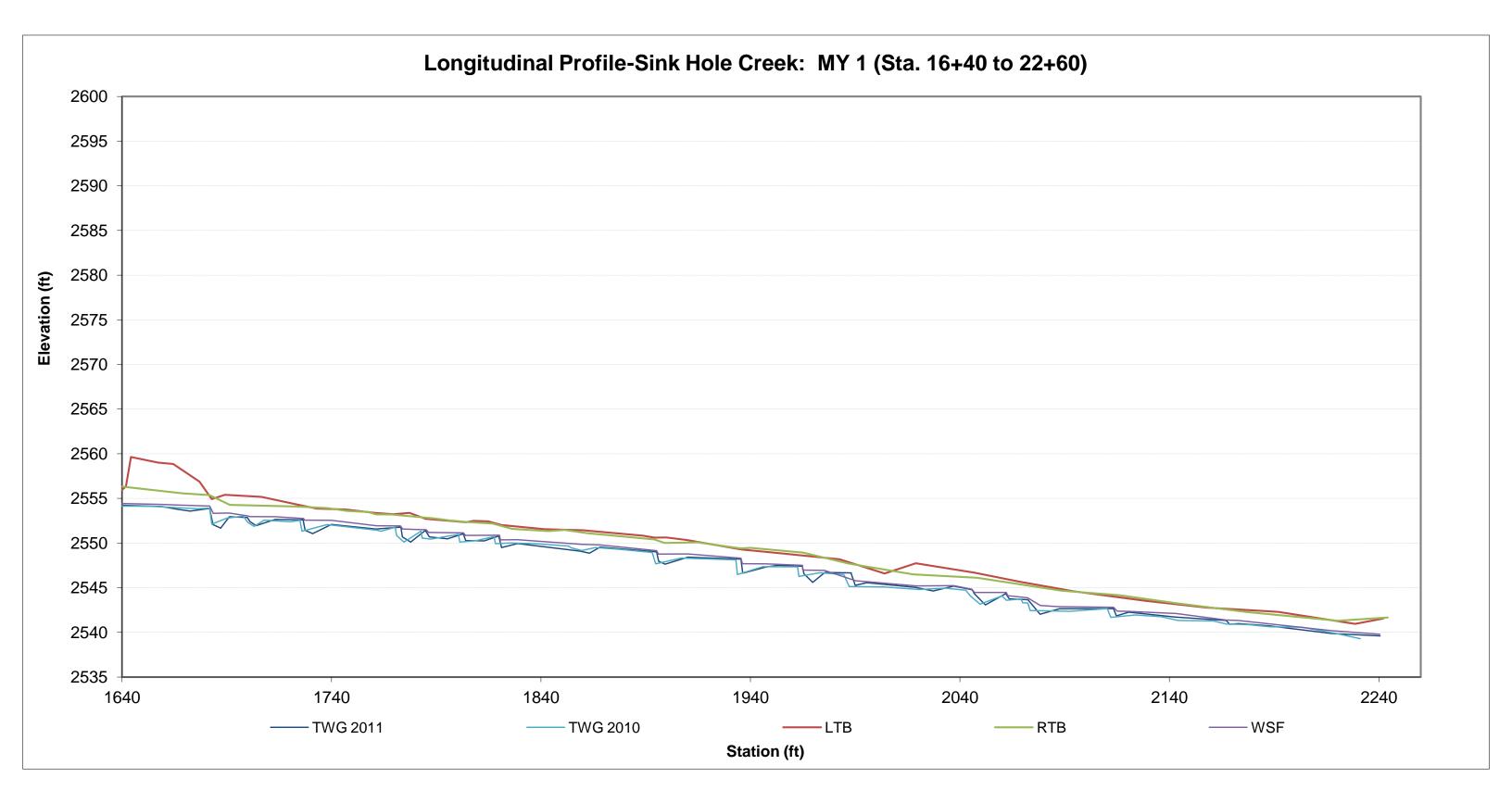
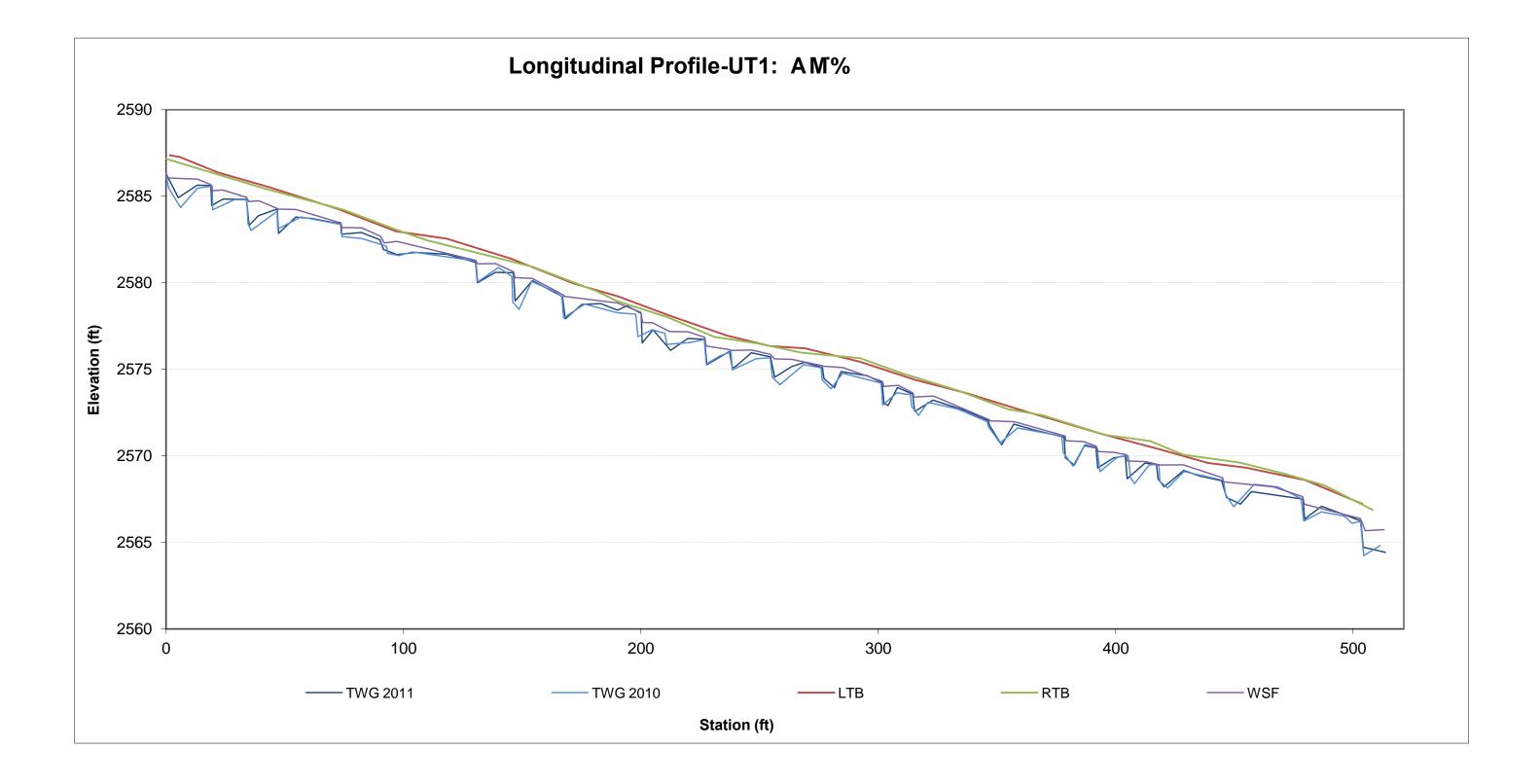


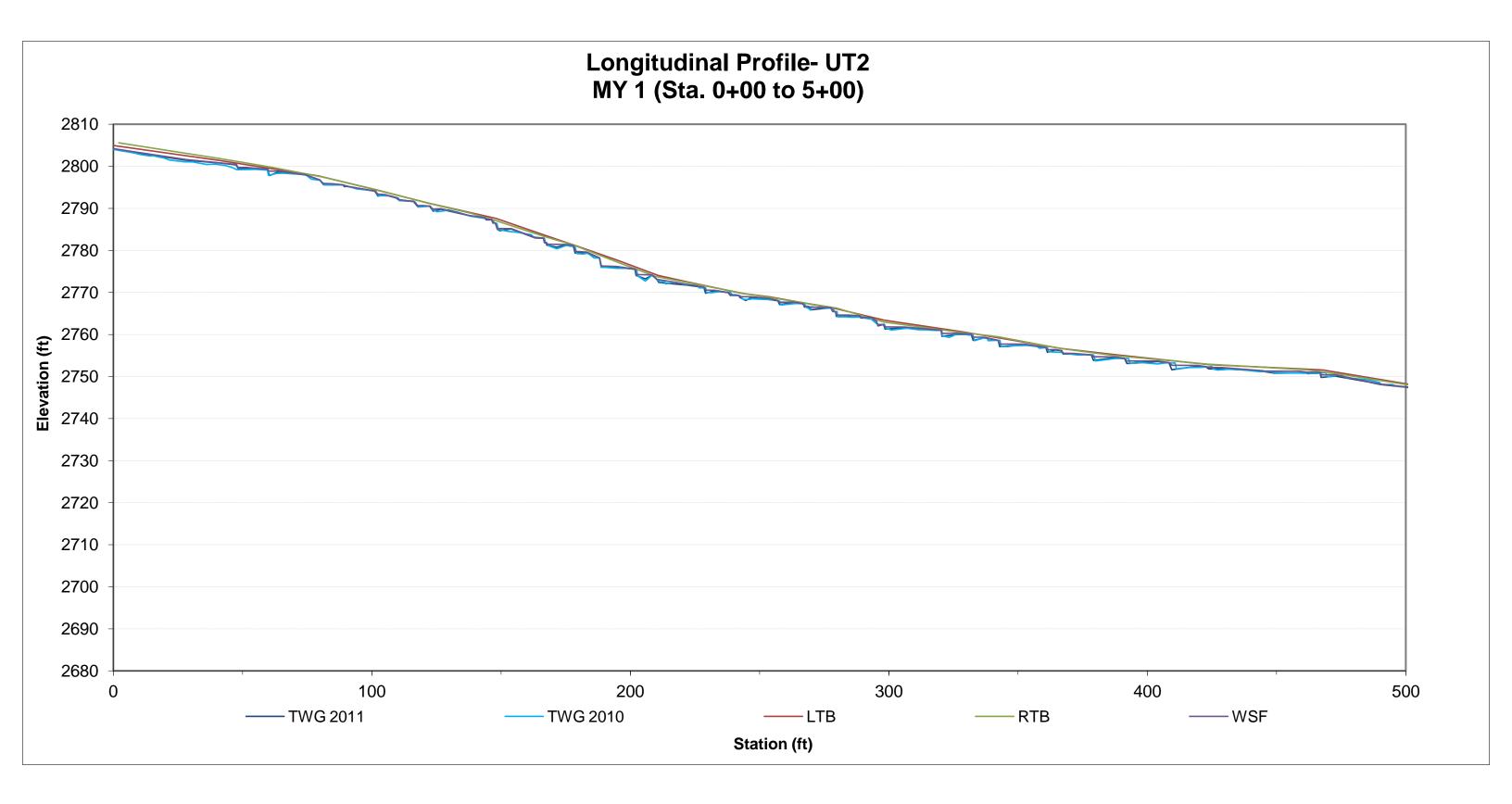
Photo 5: XS-2 facing right bank

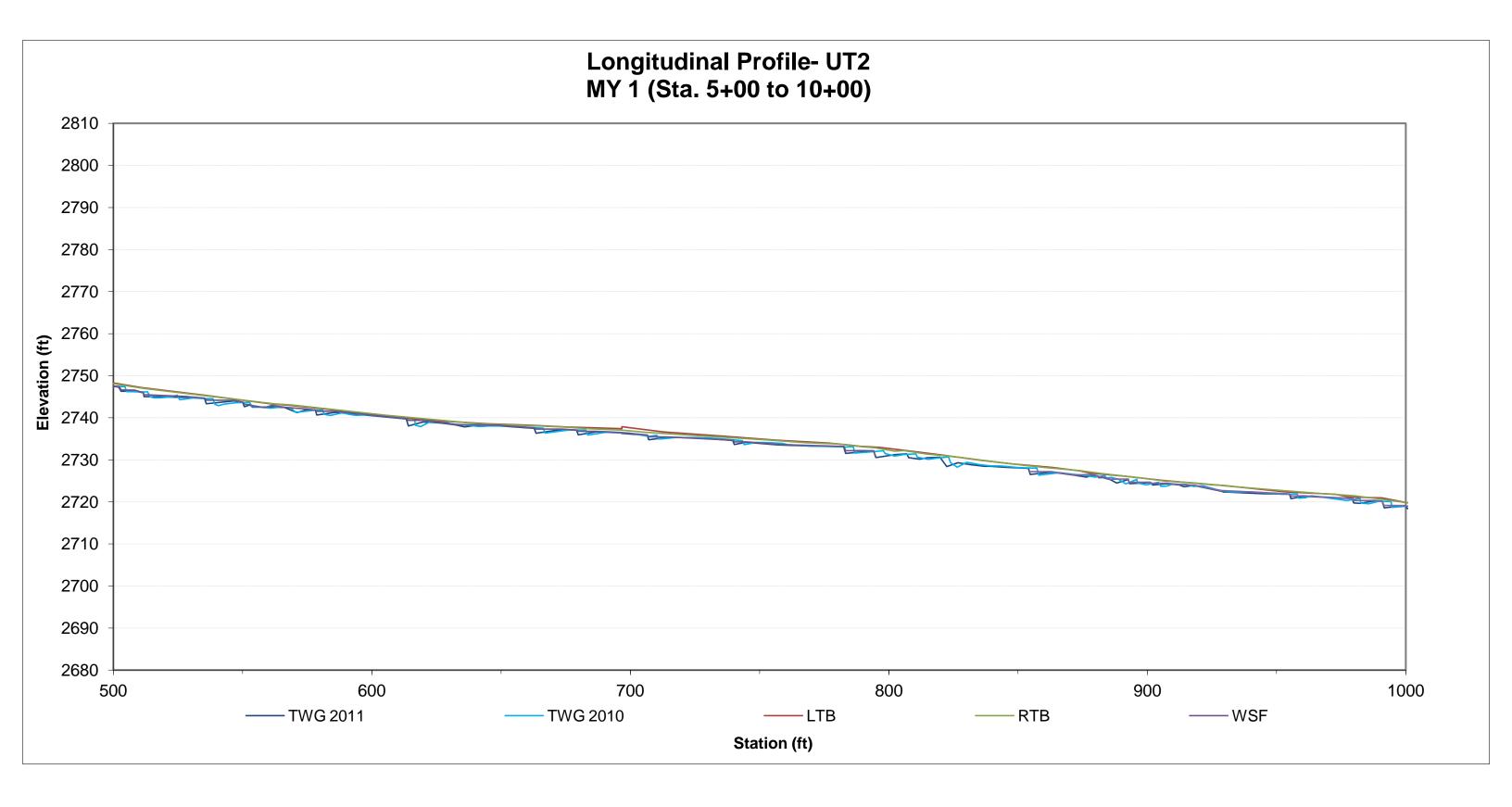


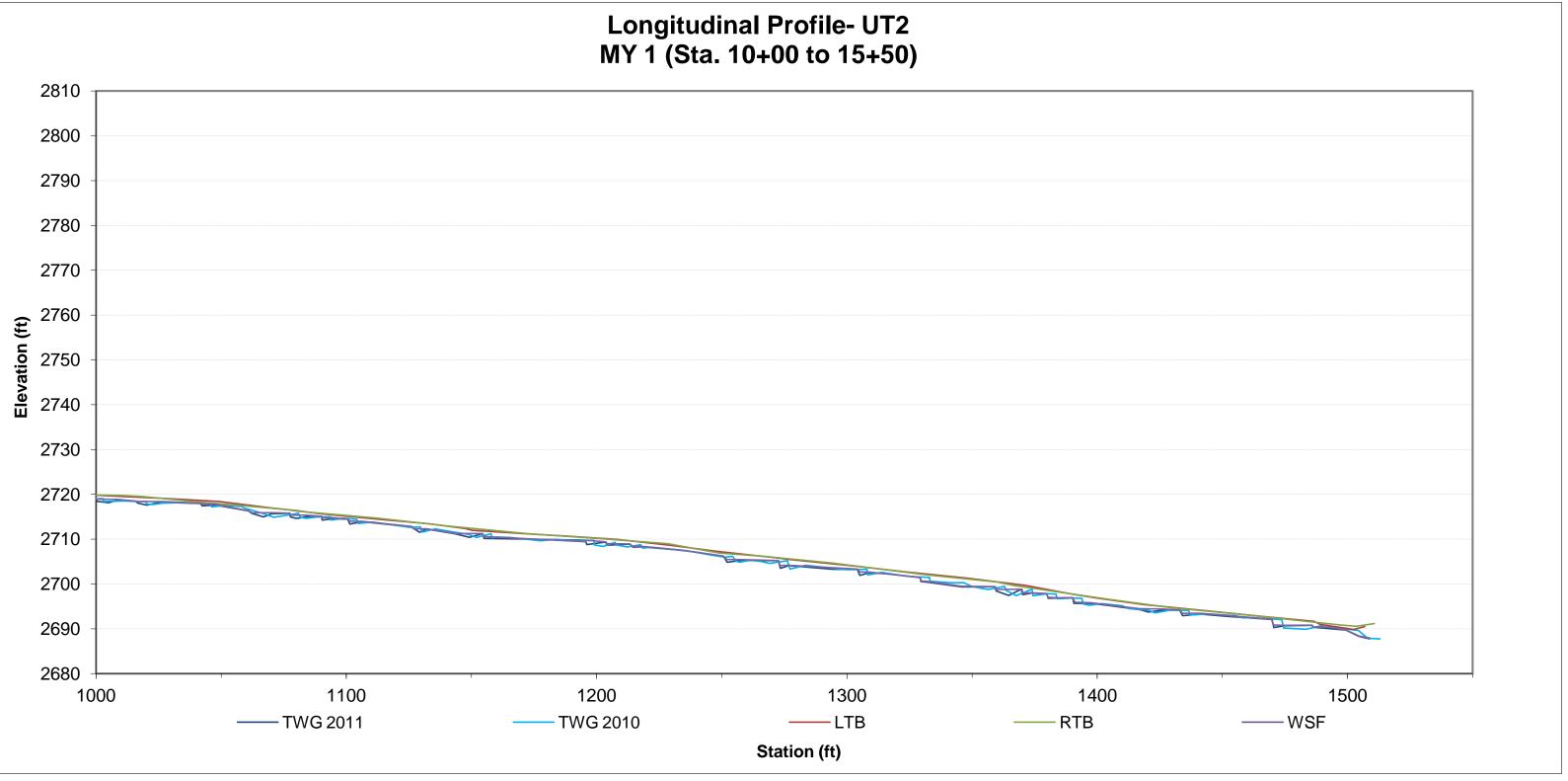

Photo 7: XS-2 facing upstream

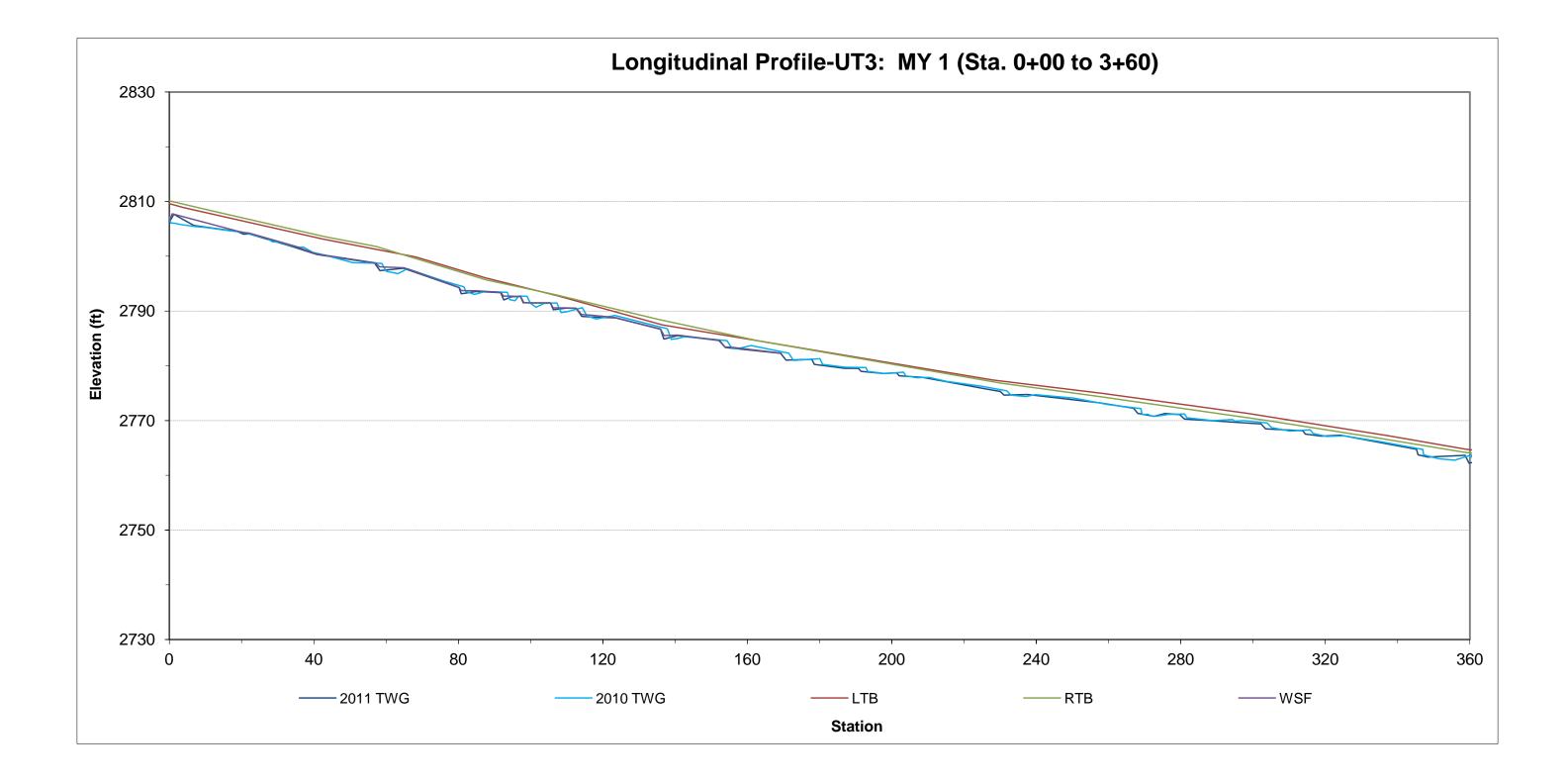

Photo 6: XS-2 facing left bank

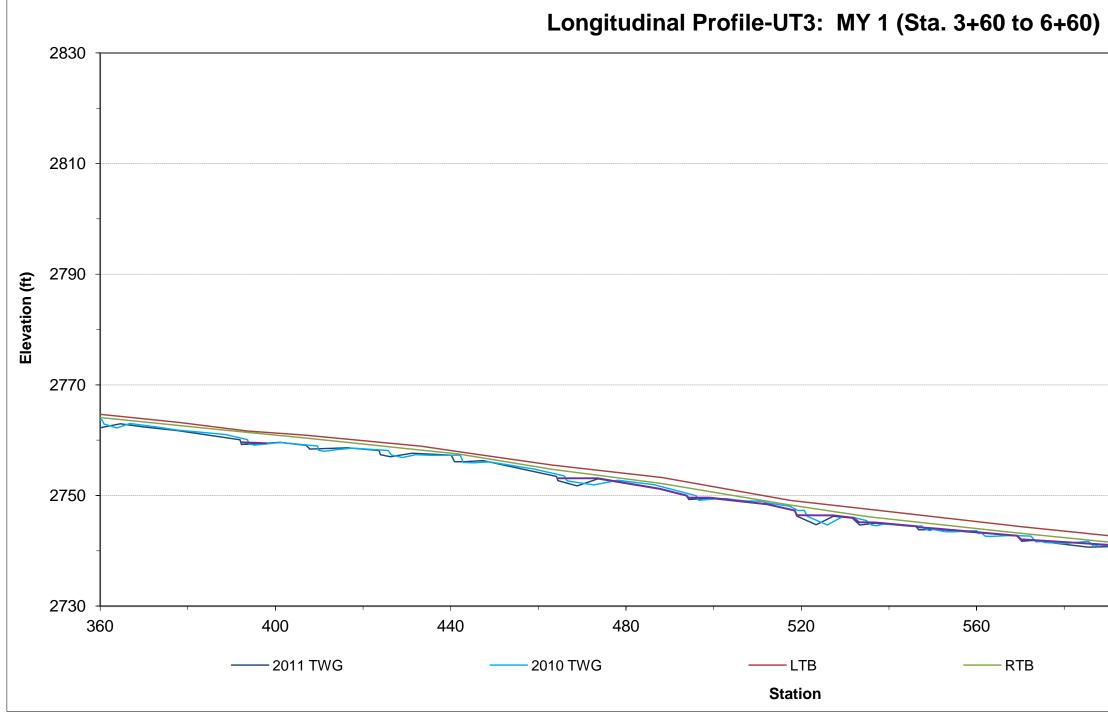



Photo 8: XS-2 facing downstream









1			
600		640	
	WSF		

Table 11. CategoricalSink Hole Creek Mitiga			-	ssessment		
Sink Hole Creek Mitiga	5	5	each 1 (1,0	10 I F)		
Feature	Initial	MY-01	MY-02	MY-03	MY-04	MY-05
Riffles	100%	100%	NI I -02	NI I -03	WI I -04	WI I -05
Pools	100%	100%				
Thalweg	100%	100%				
Meanders	100%	100%				
Bed General	100%	100%				
Bank Condition	100%	100%				
Rock/Log Drops	100%	100%				
Vanes / J Hooks etc.						
Wads and Boulders						
			each 2 (1,0	,		
Feature	Initial	MY-01	MY-02	MY-03	MY-04	MY-05
Riffles	100%	100%				
Pools	100%	100%				
Thalweg	100%	100%				
Meanders	100%	100%				
Bed General	100%	100%				
Bank Condition	100%	100%				
Rock/Log Drops	100%	100%				
Vanes / J Hooks etc.						
Wads and Boulders						
	ι	UT1 Reach	2 (489 LF)			
Feature	Initial	MY-01	MY-02	MY-03	MY-04	MY-05
Riffles	100%	100%				
Pools	100%	100%				
Thalweg	100%	100%				
Meanders	100%	100%				
Bed General	100%	100%				
Bank Condition	100%	100%				
Rock/Log Drops	100%	100%				
Vanes / J Hooks etc.						
Wads and Boulders						

	I	UT2 Reach	1 (596 LF)			
Feature	Initial	MY-01	MY-02	MY-03	MY-04	MY-05
Riffles	100%	100%				
Pools	100%	100%				
Thalweg	100%	100%				
Meanders	100%	100%				
Bed General	100%	100%				
Bank Condition	100%	100%				
Rock/Log Drops	100%	100%				
Vanes / J Hooks etc.						
Wads and Boulders						
		UT2 Reach	2 (885LF)			
Feature	Initial	MY-01	MY-02	MY-03	MY-04	MY-05
Riffles	100%	100%				
Pools	100%	100%				
Thalweg	100%	100%				
Meanders	100%	100%				
Bed General	100%	94%				
Bank Condition	100%	100%				
Rock/Log Drops	100%	99%				
Vanes / J Hooks etc.						
Wads and Boulders						
		UT3 (64	41 LF)			
Feature	Initial	MY-01	MY-02	MY-03	MY-04	MY-05
Riffles	100%	100%				
Pools	100%	100%				
Thalweg	100%	100%				
Meanders	100%	100%				
Bed General	100%	79%				
Bank Condition	100%	100%				
Rock/Log Drops	100%	99%				
Vanes / J Hooks etc.						
Wads and Boulders						

	ual Morphological Stability Assessment ek Mitigation Project: Project No. 92663					
		ach 1 (1,019 LF)				
		(# Stable) Number	1	Total Number	% Performing	Feature
Feature		Performing	Total number	/ feet in unstable	in Stable	Perfomance
Category	Metric (per As-Built and reference baselines)	as Intended	per As-Built	state	Condition	Mean or Total
A. Riffles	1. Present?	25	25	0/0	100	
	2. Armor stable (e.g. no displacement)?	25	25	0/0	100	
	3. Facet grades appears stable?	25	25	0/0	100	
	4. Minimal evidence of embedding/fining?	25	25	0/0	100	
	5. Length appropriate?	25	25	0/0	100	100%
B. Pools	1. Present? (e.g. not subject to severe aggradation or migration?)	34	34	0/0	100	
	2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?)	34	34	0/0	100	1000/
	3. Length appropriate?	34	34	0/0	100	100%
C. Thalweg ¹	1. Upstream of pool (structure) centering?	1	1	0/0	100	
C. Maiwey	2. Downstream of pool (structure) centering?	1	1	0/0	100	100% ²
	2. Downstream of poor (structure) centening:	1		0/0	100	10076
D. Meanders	1. Outer bend in state of limited/controlled erosion?	3	3	0/0	100	
	2. Of those eroding, # w/concomitant point bar formation?	3	3	0/0	100	
	3. Apparent Rc within spec?	3	3	0/0	100	
	4. Sufficient floodplain access and relief?	3	3	0/0	100	100% ³
E. Bed	1. General channel bed aggradation areas (bar formation)	1,019	1,019	0/0	100	
General	2. Channel bed degradation - areas of increasing down-					
	cutting or head cutting?	1,019	1,019	0/0	100	100%
	1. Free of back or arm scour?	34	34	0/0	100	
F. Vanes,	2. Height appropriate?	34	34	0/0	100	
Rock/Log	3. Angle and geometry appear appropriate?	34	34	0/0	100	
Drop Structures	4. Free of piping or other structural failures?	34	34	0/0	100	100%
Siluciules		54	54	0/0	100	10070
G. Wads/	1. Free of scour?	N/A	N/A	N/A	N/A	
Boulders	2. Footing stable?	N/A	N/A	N/A	N/A	N/A
	Sink Hole Re	ach 2 (1,073 LF)				
		(# Stable) Number	1	Total Number	% Performing	Feature
Feature		Performing	Total number	/ feet in unstable	in Stable	Perfomance
Category	Metric (per As-Built and reference baselines)	as Intended	per As-Built	state	Condition	Mean or Total
A. Riffles	1. Present?	19	19	0/0	100	
/	2. Armor stable (e.g. no displacement)?	19	19	0/0	100	
	3. Facet grades appears stable?	19	19	0/0	100	
	4. Minimal evidence of embedding/fining?	19	19	0/0	100	
	5. Length appropriate?	19	19	0/0	100	100%
B. Pools	 Present? (e.g. not subject to severe aggradation or migration?) 	27	27	0/0	100	
	Sufficiently deep (Max Pool D:Mean Bkf >1.6?)	27	27	0/0	100	
	3. Length appropriate?	27	27	0/0	100	100%
1		1	4	0/0	100	
C. Thalweg ¹	Upstream of pool (structure) centering? Downettroom of pool (structure) contaring?	1	1	0/0 0/0	100 100	100% ²
	2. Downstream of pool (structure) centering?	1		0/0	100	100%
D Meanders	1. Outer bend in state of limited/controlled erosion?	3		0/0	100	
D. Meanders	Outer bend in state of limited/controlled erosion? Of those eroding # w/concomitant point bar formation?	3	3	0/0	100	
D. Meanders	2. Of those eroding, # w/concomitant point bar formation?	3	3 3	0/0	100	
D. Meanders	 Of those eroding, # w/concomitant point bar formation? Apparent Rc within spec? 	-	3	0/0 0/0	100 100	100%
D. Meanders	2. Of those eroding, # w/concomitant point bar formation?	3	3 3 3	0/0	100	100%
D. Meanders E. Bed	2. Of those eroding, # w/concomitant point bar formation? 3. Apparent Rc within spec? 4. Sufficient floodplain access and relief? 1. General channel bed aggradation areas (bar formation)	3	3 3 3	0/0 0/0	100 100	100%
	 Of those eroding, # w/concomitant point bar formation? Apparent Rc within spec? 	3 3 3	3 3 3 3	0/0 0/0 0/0	100 100 100	100%
E. Bed General	2. Of those eroding, # w/concomitant point bar formation? 3. Apparent Rc within spec? 4. Sufficient floodplain access and relief? 1. General channel bed aggradation areas (bar formation) 2. Channel bed degradation - areas of increasing down- cutting or head cutting?	3 3 1,073 1,073	3 3 3 1,073 1,073	0/0 0/0 0/0 0/0 0/0	100 100 100 100 100	
E. Bed General F. Vanes,	2. Of those eroding, # w/concomitant point bar formation? 3. Apparent Rc within spec? 4. Sufficient floodplain access and relief? 1. General channel bed aggradation areas (bar formation) 2. Channel bed degradation - areas of increasing down- cutting or head cutting? 1. Free of back or arm scour?	3 3 1,073 1,073 24	3 3 3 1,073 1,073 24	0/0 0/0 0/0 0/0 0/0 0/0	100 100 100 100 100 100	
E. Bed General F. Vanes, Rock/Log	2. Of those eroding, # w/concomitant point bar formation? 3. Apparent Rc within spec? 4. Sufficient floodplain access and relief? 1. General channel bed aggradation areas (bar formation) 2. Channel bed degradation - areas of increasing down- cutting or head cutting? 1. Free of back or arm scour? 2. Height appropriate?	3 3 1,073 1,073 24 24	3 3 3 1,073 1,073 24 24	0/0 0/0 0/0 0/0 0/0 0/0 0/0	100 100 100 100 100 100 100 100	
E. Bed General F. Vanes, Rock/Log Drop	2. Of those eroding, # w/concomitant point bar formation? 3. Apparent Rc within spec? 4. Sufficient floodplain access and relief? 1. General channel bed aggradation areas (bar formation) 2. Channel bed degradation - areas of increasing down- cutting or head cutting? 1. Free of back or arm scour? 2. Height appropriate? 3. Angle and geometry appear appropriate?	3 3 1,073 1,073 24 24 24 24	3 3 3 1,073 1,073 24 24 24	0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0	100 100 100 100 100 100 100 100	100%
E. Bed General F. Vanes, Rock/Log	2. Of those eroding, # w/concomitant point bar formation? 3. Apparent Rc within spec? 4. Sufficient floodplain access and relief? 1. General channel bed aggradation areas (bar formation) 2. Channel bed degradation - areas of increasing down- cutting or head cutting? 1. Free of back or arm scour? 2. Height appropriate?	3 3 1,073 1,073 24 24	3 3 3 1,073 1,073 24 24	0/0 0/0 0/0 0/0 0/0 0/0 0/0	100 100 100 100 100 100 100 100	
E. Bed General F. Vanes, Rock/Log Drop Structures	2. Of those eroding, # w/concomitant point bar formation? 3. Apparent Rc within spec? 4. Sufficient floodplain access and relief? 1. General channel bed aggradation areas (bar formation) 2. Channel bed degradation - areas of increasing down- cutting or head cutting? 1. Free of back or arm scour? 2. Height appropriate? 3. Angle and geometry appear appropriate? 4. Free of piping or other structural failures?	3 3 1,073 1,073 24 24 24 24 24 24	3 3 3 1,073 24 24 24 24 24	0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0	100 100 100 100 100 100 100 100 100 100	100%
E. Bed General F. Vanes, Rock/Log Drop	2. Of those eroding, # w/concomitant point bar formation? 3. Apparent Rc within spec? 4. Sufficient floodplain access and relief? 1. General channel bed aggradation areas (bar formation) 2. Channel bed degradation - areas of increasing down- cutting or head cutting? 1. Free of back or arm scour? 2. Height appropriate? 3. Angle and geometry appear appropriate?	3 3 1,073 1,073 24 24 24 24	3 3 3 1,073 1,073 24 24 24	0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0	100 100 100 100 100 100 100 100	100%

	UT1 Read	h 2 (489 LF)				
		(# Stable) Number		Total Number	% Performing	Feature
Feature		Performing	Total number	/ feet in unstable	in Stable	Perfomance
Category	Metric (per As-Built and reference baselines)	as Intended	per As-Built	state	Condition	Mean or Total
A. Riffles	1. Present?	15	15	0/0	100	
	2. Armor stable (e.g. no displacement)?	15	15	0/0	100	
	3. Facet grades appears stable?	15	15	0/0	100	
	4. Minimal evidence of embedding/fining?	15	15	0/0	100	
	5. Length appropriate?	15	15	0/0	100	100%
B. Pools	1. Present? (e.g. not subject to severe aggradation or migration?)	24	24	0/0	100	
	2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?)	24	24	0/0	100	4000/
	3. Length appropriate?	24	24	0/0	100	100%
a - 1	1. Upstream of pool (structure) centering?	1	1	0/0	100	
C. Thalweg ¹	2. Downstream of pool (structure) centering?	1	1	0/0	100	100% ²
	2. Downstream of pool (structure) centering?	-		0/0	100	100%
D. Meanders	1. Outer bend in state of limited/controlled erosion?	2	2	0/0	100	
D. Meanuers	2. Of those eroding, # w/concomitant point bar formation?	2	2	0/0	100	
	3. Apparent Rc within spec?	2	2	0/0	100	
	4. Sufficient floodplain access and relief?	2	2	0/0	100	100%
			-	6,6		
E. Bed	1. General channel bed aggradation areas (bar formation)	489	489	0/0	100	ĺ
General	2. Channel bed degradation - areas of increasing down-					
	cutting or head cutting?	489	489	0/0	100	100%
F. Vanes,	1. Free of back or arm scour?	24	24	0/0	100	
Rock/Log	2. Height appropriate?	24	24	0/0	100	
Drop	3. Angle and geometry appear appropriate?	24	24	0/0	100	
Structures	4. Free of piping or other structural failures?	24	24	0/0	100	100%
G. Wads/	1. Free of scour?	N/A	N/A	N/A	N/A	
Boulders	2. Footing stable?	N/A	N/A	N/A	N/A	N/A
	UT2 Read	h 1 (596 LF)				
-		(# Stable) Number	-	Total Number	% Performing	Feature
Feature		Performing	Total number	/ feet in unstable	in Stable	Perfomance
Category	Metric (per As-Built and reference baselines)	as Intended	per As-Built	state	Condition	Mean or Total
A. Riffles	1. Present?	23	23	0/0	100	
	2. Armor stable (e.g. no displacement)?	23	23	0/0	100	
	3. Facet grades appears stable?	23	23	0/0	100	
	4. Minimal evidence of embedding/fining?	23	23	0/0	100	100%
	5. Length appropriate?	23	23	0	100	100%
B. Pools	1. Present? (e.g. not subject to severe aggradation or migration?)	27	27	0/0	100	
B. POOIS	2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?)		21	0/0		
		27	27	0/0		
1		27	27	0/0	100	100%
	3. Length appropriate?	27 27	27 27	0/0 0/0		100%
C. Thelweg ¹	3. Length appropriate?	27		0/0	100 100	100%
C. Thalweg ¹	3. Length appropriate? 1. Upstream of pool (structure) centering?	27	27 1	0/0	100 100 100	
C. Thalweg ¹	3. Length appropriate?	27	27	0/0	100 100	100% 100% ²
	3. Length appropriate? 1. Upstream of pool (structure) centering? 2. Downstream of pool (structure) centering?	27	27 1	0/0 0/0 0/0	100 100 100 100	
C. Thalweg ¹ D. Meanders	3. Length appropriate? 1. Upstream of pool (structure) centering? 2. Downstream of pool (structure) centering? 1. Outer bend in state of limited/controlled erosion?	27 1 1	27 1 1	0/0	100 100 100	
,	3. Length appropriate? 1. Upstream of pool (structure) centering? 2. Downstream of pool (structure) centering?	27 1 1 2	27 1 1 2	0/0 0/0 0/0 0/0	100 100 100 100 100	
,	3. Length appropriate? 1. Upstream of pool (structure) centering? 2. Downstream of pool (structure) centering? 1. Outer bend in state of limited/controlled erosion? 2. Of those eroding, # w/concomitant point bar formation?	27 1 1 2 2 2	27 1 1 2 2	0/0 0/0 0/0 0/0 0/0	100 100 100 100 100 100	
D. Meanders	3. Length appropriate? 1. Upstream of pool (structure) centering? 2. Downstream of pool (structure) centering? 1. Outer bend in state of limited/controlled erosion? 2. Of those eroding, # w/concomitant point bar formation? 3. Apparent Rc within spec? 4. Sufficient floodplain access and relief?	27 1 1 2 2 2 2 2	27 1 1 2 2 2 2 2 2	0/0 0/0 0/0 0/0 0/0 0/0 0/0	100 100 100 100 100 100 100 100	100% ²
D. Meanders E. Bed	3. Length appropriate? 1. Upstream of pool (structure) centering? 2. Downstream of pool (structure) centering? 1. Outer bend in state of limited/controlled erosion? 2. Of those eroding, # w/concomitant point bar formation? 3. Apparent Rc within spec? 4. Sufficient floodplain access and relief? 1. General channel bed aggradation areas (bar formation)	27 1 1 2 2 2 2	27 1 1 2 2 2 2	0/0 0/0 0/0 0/0 0/0 0/0	100 100 100 100 100 100 100	100% ²
D. Meanders	3. Length appropriate? 1. Upstream of pool (structure) centering? 2. Downstream of pool (structure) centering? 1. Outer bend in state of limited/controlled erosion? 2. Of those eroding, # w/concomitant point bar formation? 3. Apparent Rc within spec? 4. Sufficient floodplain access and relief? 1. General channel bed aggradation areas (bar formation) 2. Channel bed degradation - areas of increasing down-	27 1 1 2 2 2 2 596	27 1 2 2 2 2 596	0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0	100 100 100 100 100 100 100 100 100	100% ²
D. Meanders E. Bed	3. Length appropriate? 1. Upstream of pool (structure) centering? 2. Downstream of pool (structure) centering? 1. Outer bend in state of limited/controlled erosion? 2. Of those eroding, # w/concomitant point bar formation? 3. Apparent Rc within spec? 4. Sufficient floodplain access and relief? 1. General channel bed aggradation areas (bar formation)	27 1 1 2 2 2 2 2	27 1 1 2 2 2 2 2 2	0/0 0/0 0/0 0/0 0/0 0/0 0/0	100 100 100 100 100 100 100 100	100% ²
D. Meanders E. Bed General	3. Length appropriate? 1. Upstream of pool (structure) centering? 2. Downstream of pool (structure) centering? 1. Outer bend in state of limited/controlled erosion? 2. Of those eroding, # w/concomitant point bar formation? 3. Apparent Rc within spec? 4. Sufficient floodplain access and relief? 1. General channel bed aggradation areas (bar formation) 2. Channel bed degradation - areas of increasing down- cutting or head cutting?	27 1 1 2 2 2 2 596 596	27 1 2 2 2 596 596	0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0	100 100 100 100 100 100 100 100 100 100	100% ²
D. Meanders E. Bed General F. Vanes,	3. Length appropriate? 1. Upstream of pool (structure) centering? 2. Downstream of pool (structure) centering? 1. Outer bend in state of limited/controlled erosion? 2. Of those eroding, # w/concomitant point bar formation? 3. Apparent Rc within spec? 4. Sufficient floodplain access and relief? 1. General channel bed aggradation areas (bar formation) 2. Channel bed degradation - areas of increasing down- cutting or head cutting? 1. Free of back or arm scour?	27 1 1 2 2 2 2 596 596 28	27 1 2 2 2 2 596 596 28	0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0	100 100 100 100 100 100 100 100 100 100	100% ²
D. Meanders E. Bed General F. Vanes, Rock/Log	3. Length appropriate? 1. Upstream of pool (structure) centering? 2. Downstream of pool (structure) centering? 1. Outer bend in state of limited/controlled erosion? 2. Of those eroding, # w/concomitant point bar formation? 3. Apparent Rc within spec? 4. Sufficient floodplain access and relief? 1. General channel bed aggradation areas (bar formation) 2. Channel bed degradation - areas of increasing down- cutting or head cutting? 1. Free of back or arm scour? 2. Height appropriate?	27 1 1 2 2 2 2 596 596 28 28	27 1 1 2 2 2 2 2 596 596 28 28	0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0	100 100 100 100 100 100 100 100 100 100	100% ²
D. Meanders E. Bed General F. Vanes, Rock/Log Drop	3. Length appropriate? 1. Upstream of pool (structure) centering? 2. Downstream of pool (structure) centering? 1. Outer bend in state of limited/controlled erosion? 2. Of those eroding, # w/concomitant point bar formation? 3. Apparent Rc within spec? 4. Sufficient floodplain access and relief? 1. General channel bed aggradation areas (bar formation) 2. Channel bed degradation - areas of increasing down- cutting or head cutting? 1. Free of back or arm scour? 2. Height appropriate? 3. Angle and geometry appear appropriate?	27 1 1 2 2 2 2 596 596 28 28 28	27 1 2 2 2 2 596 596 28 28 28	0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0	100 100 100 100 100 100 100 100 100 100	100% ² 100% 100%
E. Bed General F. Vanes, Rock/Log	3. Length appropriate? 1. Upstream of pool (structure) centering? 2. Downstream of pool (structure) centering? 1. Outer bend in state of limited/controlled erosion? 2. Of those eroding, # w/concomitant point bar formation? 3. Apparent Rc within spec? 4. Sufficient floodplain access and relief? 1. General channel bed aggradation areas (bar formation) 2. Channel bed degradation - areas of increasing down- cutting or head cutting? 1. Free of back or arm scour? 2. Height appropriate?	27 1 1 2 2 2 2 596 596 28 28	27 1 1 2 2 2 2 2 596 596 28 28	0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0	100 100 100 100 100 100 100 100 100 100	100% ²
E. Bed General F. Vanes, Rock/Log Drop Structures	3. Length appropriate? 1. Upstream of pool (structure) centering? 2. Downstream of pool (structure) centering? 1. Outer bend in state of limited/controlled erosion? 2. Of those eroding, # w/concomitant point bar formation? 3. Apparent Rc within spec? 4. Sufficient floodplain access and relief? 1. General channel bed aggradation areas (bar formation) 2. Channel bed degradation - areas of increasing down- cutting or head cutting? 1. Free of back or arm scour? 2. Height appropriate? 3. Angle and geometry appear appropriate?	27 1 1 2 2 2 2 596 596 28 28 28 28 28	27 1 1 2 2 2 2 596 596 28 28 28 28 28	0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0	100 100 100 100 100 100 100 100 100 100	100% ² 100% 100%
D. Meanders E. Bed General F. Vanes, Rock/Log Drop	3. Length appropriate? 1. Upstream of pool (structure) centering? 2. Downstream of pool (structure) centering? 1. Outer bend in state of limited/controlled erosion? 2. Of those eroding, # w/concomitant point bar formation? 3. Apparent Rc within spec? 4. Sufficient floodplain access and relief? 1. General channel bed aggradation areas (bar formation) 2. Channel bed degradation - areas of increasing down- cutting or head cutting? 1. Free of back or arm scour? 2. Height appropriate? 3. Angle and geometry appear appropriate?	27 1 1 2 2 2 2 596 596 28 28 28	27 1 2 2 2 2 596 596 28 28 28	0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0	100 100 100 100 100 100 100 100 100 100	100% ² 100% 100%

	UT2 Read	h 2 (885 LF)				
		(# Stable) Number		Total Number	% Performing	Feature
Feature		Performing	Total number	/ feet in unstable	in Stable	Perfomance
Category	Metric (per As-Built and reference baselines)	as Intended	per As-Built	state	Condition	Mean or Tota
A. Riffles	1. Present?	23	23	0/0	100	
	2. Armor stable (e.g. no displacement)?	23	23	0/0	100	
	3. Facet grades appears stable?	23	23	0/0	100	
	4. Minimal evidence of embedding/fining?	23	23	0/0	100	
	5. Length appropriate?	23	23	0/0	100	100%
B. Pools	1. Present? (e.g. not subject to severe aggradation or migration?)	37	37	0/0	100	
	Sufficiently deep (Max Pool D:Mean Bkf >1.6?)	37	37	0/0	100	
	3. Length appropriate?	37	37	0/0	100	100%
				0/0	100	
C. Thalweg ¹	1. Upstream of pool (structure) centering?	1	1	0/0	100	
	2. Downstream of pool (structure) centering?	1	1	0/0	100	100% ²
				0/0	100	
D. Meanders	1. Outer bend in state of limited/controlled erosion?	3	3	0/0	100	
	2. Of those eroding, # w/concomitant point bar formation?	3	3	0/0	100	
	3. Apparent Rc within spec?	3	3	0/0	100	
	4. Sufficient floodplain access and relief?	3	3	0/0	100	100%
E Ded	1 Conoral abaptal had aggradation areas (has formation)	005	885	0/0	100	
E. Bed	1. General channel bed aggradation areas (bar formation)	885	885	0/0	100	
General⁴	Channel bed degradation - areas of increasing down- cutting or head cutting?	705	005	100	80	0.407
	cutting or head cutting?	785	885	100	89	94%
F. Vanes,	1. Free of back or arm scour?	37	37	0/0	100	
	2. Height appropriate?	37	37	0/0	100	
Rock/Log	3. Angle and geometry appear appropriate?	37	37	0/0	100	
Drop	4. Free of piping or other structural failures?	36	37	1	97	99%
Structures			- 57	1	51	33 /6
G. Wads/	1. Free of scour?	N/A	N/A	N/A	N/A	
Boulders	2. Footing stable?	N/A	N/A	N/A	N/A	N/A
Douiders	•	641 LF)				
	013	(# Stable) Number	1	Total Number	% Performing	Feature
Feature		Performing	Total number	/ feet in unstable	in Stable	Perfomance
Category		as Intended	per As-Built	state	Condition	Mean or Total
•••	Metric (per As-Built and reference baselines)			0/0		IVIEAN OF TOTAL
A. Riffles	1. Present?	25 25	25 25	0/0	100	
	2. Armor stable (e.g. no displacement)?					
	3. Facet grades appears stable?			0/0	100	
		25	25	0/0	100	
	4. Minimal evidence of embedding/fining?	25	25	0/0	100 100	400%
	4. Minimal evidence of embedding/fining? 5. Length appropriate?				100	100%
D. D I.	5. Length appropriate?	25 25	25 25	0/0 0/0	100 100 100	100%
B. Pools	 Length appropriate? Present? (e.g. not subject to severe aggradation or migration?) 	25 25 34	25 25 34	0/0 0/0 0/0	100 100 100 100	100%
B. Pools	5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkt >1.6?)	25 25 34 34	25 25 34 34	0/0 0/0 0/0 0/0	100 100 100 100 100	
B. Pools	 Length appropriate? Present? (e.g. not subject to severe aggradation or migration?) 	25 25 34	25 25 34	0/0 0/0 0/0	100 100 100 100	100%
	5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate?	25 25 34 34 34 34	25 25 34 34 34 34	0/0 0/0 0/0 0/0 0/0	100 100 100 100 100 100	
B. Pools C. Thalweg ¹	5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering?	25 25 34 34 34 34 1	25 25 34 34 34 34 1	0/0 0/0 0/0 0/0 0/0 0/0	100 100 100 100 100 100 100 100	100%
	5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate?	25 25 34 34 34	25 25 34 34 34 34	0/0 0/0 0/0 0/0 0/0	100 100 100 100 100 100	
C. Thalweg ¹	5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? 2. Downstream of pool (structure) centering?	25 25 34 34 34 1 1	25 25 34 34 34 1 1	0/0 0/0 0/0 0/0 0/0 0/0 0/0	100 100 100 100 100 100 100 100	100%
	5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? 2. Downstream of pool (structure) centering? 1. Outer bend in state of limited/controlled erosion?	25 25 34 34 34 1 1 1	25 25 34 34 34 1 1 1	0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0	100 100 100 100 100 100 100 100 100 100	100%
C. Thalweg ¹	5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? 2. Downstream of pool (structure) centering? 1. Outer bend in state of limited/controlled erosion? 2. Of those eroding, # w/concomitant point bar formation?	25 25 34 34 1 1 1 1 1 1	25 25 34 34 34 1 1 1 1 1	0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0	100 100 100 100 100 100 100 100 100 100	100%
C. Thalweg ¹	5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? 2. Downstream of pool (structure) centering? 1. Outer bend in state of limited/controlled erosion? 2. Of those eroding, # w/concomitant point bar formation? 3. Apparent Rc within spec?	25 25 34 34 1 1 1 1 1 1 1 1	25 25 34 34 34 1 1 1 1 1 1 1	0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0	100 100 100 100 100 100 100 100 100 100	100%
C. Thalweg ¹	5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? 2. Downstream of pool (structure) centering? 1. Outer bend in state of limited/controlled erosion? 2. Of those eroding, # w/concomitant point bar formation?	25 25 34 34 1 1 1 1 1 1	25 25 34 34 34 1 1 1 1 1	0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0	100 100 100 100 100 100 100 100 100 100	100%
C. Thalweg ¹ D. Meanders	5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? 2. Downstream of pool (structure) centering? 1. Outer bend in state of limited/controlled erosion? 2. Of those eroding, # w/concornitant point bar formation? 3. Apparent Rc within spec? 4. Sufficient floodplain access and relief?	25 25 34 34 1 1 1 1 1 1 1 1 1	25 25 34 34 34 1 1 1 1 1 1 1 1	0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0	100 100 100 100 100 100 100 100 100 100	100%
C. Thalweg ¹ D. Meanders E. Bed	5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? 2. Downstream of pool (structure) centering? 1. Outer bend in state of limited/controlled erosion? 2. Of those eroding, # w/concomitant point bar formation? 3. Apparent Rc within spec? 4. Sufficient floodplain access and relief? 1. General channel bed aggradation areas (bar formation)	25 25 34 34 1 1 1 1 1 1 1 1	25 25 34 34 34 1 1 1 1 1 1 1	0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0	100 100 100 100 100 100 100 100 100 100	100%
C. Thalweg ¹ D. Meanders	5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? 2. Downstream of pool (structure) centering? 1. Outer bend in state of limited/controlled erosion? 2. Of those eroding, # w/concomitant point bar formation? 3. Apparent Rc within spec? 4. Sufficient floodplain access and relief? 1. General channel bed aggradation areas (bar formation) 2. Channel bed degradation - areas of increasing down-	25 25 34 34 1 1 1 1 1 1 1 641	25 25 34 34 1 1 1 1 1 1 641	0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0	100 100 100 100 100 100 100 100 100 100	100% 100% ² 100%
C. Thalweg ¹ D. Meanders E. Bed	5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? 2. Downstream of pool (structure) centering? 1. Outer bend in state of limited/controlled erosion? 2. Of those eroding, # w/concomitant point bar formation? 3. Apparent Rc within spec? 4. Sufficient floodplain access and relief? 1. General channel bed aggradation areas (bar formation)	25 25 34 34 1 1 1 1 1 1 1 1 1	25 25 34 34 34 1 1 1 1 1 1 1 1	0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0	100 100 100 100 100 100 100 100 100 100	100%
C. Thalweg ¹ D. Meanders E. Bed Generat ⁴	5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? 2. Downstream of pool (structure) centering? 1. Outer bend in state of limited/controlled erosion? 2. Of those eroding, # w/concomitant point bar formation? 3. Apparent Rc within spec? 4. Sufficient floodplain access and relief? 1. General channel bed aggradation areas (bar formation) 2. Channel bed degradation - areas of increasing down-cutting or head cutting?	25 25 34 34 1 1 1 1 1 1 1 641 366	25 25 34 34 34 1 1 1 1 1 1 641 641	0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0	100 100 100 100 100 100 100 100 100 100	100% 100% ² 100%
C. Thalweg ¹ D. Meanders E. Bed General ⁴ F. Vanes,	5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? 2. Downstream of pool (structure) centering? 1. Outer bend in state of limited/controlled erosion? 2. Of those eroding, # w/concomitant point bar formation? 3. Apparent Rc within spec? 4. Sufficient floodplain access and relief? 1. General channel bed aggradation areas (bar formation) 2. Channel bed degradation - areas of increasing down-cutting or head cutting? 1. Free of back or arm scour?	25 25 34 34 1 1 1 1 1 1 1 641 366 34	25 25 34 34 34 1 1 1 1 1 1 1 641 641 641 34	0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0	100 100 100 100 100 100 100 100 100 100	100% 100% ² 100%
C. Thalweg ¹ D. Meanders E. Bed General ⁴ F. Vanes, Rock/Log	5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? 2. Downstream of pool (structure) centering? 1. Outer bend in state of limited/controlled erosion? 2. Of those eroding, # w/concomitant point bar formation? 3. Apparent Rc within spec? 4. Sufficient floodplain access and relief? 1. General channel bed aggradation areas (bar formation) 2. Channel bed degradation - areas of increasing down- cutting or head cutting? 1. Free of back or arm scour? 2. Height appropriate?	25 25 34 34 34 1 1 1 1 1 1 1 1 641 366 34 34	25 25 34 34 1 1 1 1 1 1 641 641 641 641 34 34	0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0	100 100 100 100 100 100 100 100 100 100	100% 100% ² 100%
C. Thalweg ¹ D. Meanders E. Bed General ⁴ F. Vanes, Rock/Log Drop	5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? 2. Downstream of pool (structure) centering? 1. Outer bend in state of limited/controlled erosion? 2. Of those eroding, # w/concomitant point bar formation? 3. Apparent Rc within spec? 4. Sufficient floodplain access and relief? 1. General channel bed aggradation areas (bar formation) 2. Channel bed degradation - areas of increasing down- cutting or head cutting? 1. Free of back or arm scour? 2. Height appropriate?	25 25 34 34 34 1 1 1 1 1 1 1 641 366 34 34 34	25 25 34 34 34 1 1 1 1 1 1 641 641 641 641 34 34	0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0	100 100 100 100 100 100 100 100 100 100	100% 100% ² 100% 79%
C. Thalweg ¹ D. Meanders E. Bed General ⁴ F. Vanes, Rock/Log	5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? 2. Downstream of pool (structure) centering? 1. Outer bend in state of limited/controlled erosion? 2. Of those eroding, # w/concomitant point bar formation? 3. Apparent Rc within spec? 4. Sufficient floodplain access and relief? 1. General channel bed aggradation areas (bar formation) 2. Channel bed degradation - areas of increasing down- cutting or head cutting? 1. Free of back or arm scour? 2. Height appropriate?	25 25 34 34 34 1 1 1 1 1 1 1 1 641 366 34 34	25 25 34 34 1 1 1 1 1 1 641 641 641 641 34 34	0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0	100 100 100 100 100 100 100 100 100 100	100% 100% ² 100%
C. Thalweg ¹ D. Meanders E. Bed General ⁴ F. Vanes, Rock/Log Drop	5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? 2. Downstream of pool (structure) centering? 1. Outer bend in state of limited/controlled erosion? 2. Of those eroding, # w/concomitant point bar formation? 3. Apparent Rc within spec? 4. Sufficient floodplain access and relief? 1. General channel bed aggradation areas (bar formation) 2. Channel bed degradation - areas of increasing down- cutting or head cutting? 1. Free of back or arm scour? 2. Height appropriate?	25 25 34 34 34 1 1 1 1 1 1 1 641 366 34 34 34	25 25 34 34 34 1 1 1 1 1 1 641 641 641 641 34 34	0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0	100 100 100 100 100 100 100 100 100 100	100% 100% ² 100% 79%

Thalweg feature is scored according to the centering of the thalweg over inverts of drop structures above pools and through the constructed riffle below pools since this reach is

 ² Of the structures and riffles that contained flow, 100% had a centered thalweg. Centering of the thalweg for all remaining structures and riffles lacking baseflow that are located within the 'dry' portion of the reach will be re-assessed in the Year 2 monitoring report.
 ³ Given the stream types present within the project area, stream flow energy was primarily managed vertically through drop control structures. Pattern adjustments were not designed to increase sinuosity on-site. As a result, the features addressed in Section D. 1-3 are not as common to the project site as they are on C or E-type channels in more north clearing to train the train types. gently sloping terrain.

⁴ The channel bed is stable; the linear feet provided in Column F represents the total linear feet of subsurface flow.

Table 1' . Stream Reach Morphology an																									
Sink Hole Creek Mitigation Project #926	63																								
												ata Sum k: Reach													
Parameter	Regional Curve Equation			n(es) Data		Design			(As-Built)			Yr 1			Yr 2			Yr 3			Yr 4			Yr 5	
Dimension - Riffle	Eq.	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max
Bankfull Width (ft)	16.9	11.7	19.7	27.6	12.3	12.7	13.0	12.9	13.5	14.2	12.6	13.5	14.3											i l	
Floodprone Width (ft)		20.0	30.5	41.0	70.0	85.0	100.0	58.0	63.7	69.4	56.7	63.0	69.4											1	
Bankfull Mean Depth (ft)	1.00	0.60	0.85	1.10	1.00	1.05	1.10	0.95	1.09	1.23	0.78	0.90	1.01											1	
Bankfull Max Depth (ft)		0.90	1.70	2.50		1.40		1.48	1.72	1.96	1.34	1.55	1.76											i – – – – – – – – – – – – – – – – – – –	
Bankfull Cross Sectional Area (ft2)	17.7	18.3	19.4	20.4	12.6	13.3	14.0	12.2	14.8	17.4	9.8	12.2	14.5											1	
Width/Depth Ratio		8.6	12.0	15.4	11.8	11.9	12.0	11.6	12.6	13.6	14.1 4.0	15.2 4.7	16.2 5.5											1	
	Entrenchment Ratio 1.6 2.0 2.4 5.4 6.8 8.1 4.1 4.8 5.4 Bank Height Ratio 1.0 1.4 1.8 1.0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td></t<>																							1	
	Bank Height Ratio 1.0 1.4 1.8 1.0 1.0 1.0 1.0 1.0																								
	Bankfull Velocity (fps) 8.3 6.3 5.7																							1	
Pattern	Bankfull Velocity (fps) 8.3 6.3 5.7 n																		-						
	Channel Beltwidth (ft)* 16 36 55 45 60 74 30 47																							,	
Radius of Curvature (ft)*		28	38	47	31	38	45	32	39	47	32	39	47											$ \longrightarrow $	
Meander Wavelength (ft)*		70	165	260	138	142	145	135	140	146	135	140	146											$ \longrightarrow $	
Meander Width Ratio*		1.1	2.6	4.1	3.7	4.7	5.7	2.4	3.5	4.9	2.4	3.5	4.9											1	
Profile				-			-		-						•			•	-		•	•			
Riffle Length (ft)								9	21	32	7	21	32											└───┤	
Riffle Slope (ft/ft)		0.036	0.045	0.055	0.038	0.044	0.050	0.010	0.023	0.053	0.016	0.027	0.062											$ \longrightarrow $	
Pool Length (ft)								7	15	21	8	14	22											└───┤	
Pool Spacing (ft)		42	137	231	18	40	62	17	35	66	15	33	46											I	
Substrate and Transport Parameters																									
d16 / d35 / d50 / d84 / d95		0.1/	6.6/14/7	1/110		3/8/10/50/9	95	8/	20/31/93/1	52	.6	16/34/110	172												
Reach Shear Stress (competency) lb/f2						1.9			1.5			1.6												i – – – – – – – – – – – – – – – – – – –	
Stream Power (transport capacity) W/m2						12.0			8.7			10.8												1	
Additional Reach Parameters						-	-																		
Channel length (ft)						1036			1122			1122												1	
Drainage Area (SM)		0.72	0.78	0.84		0.72			0.72			0.72													
Rosgen Classification			B4c			B4c/C4			Cb4/Eb4			Cb4/Eb4												· · · · · ·	
Bankfull Discharge (cfs)	78		161			84			84			84													
Sinuosity		1.08	1.09	1.09	1.10	1.15	1.20		1.10			1.10													
BF slope (ft/ft)		0.024	0.026	0.028	0.025	0.025	0.026		0.026			0.029												·	
Notes: Pattern data generated from subreach of	f Reach 1, directly up	pstream c	of the NC	CHwy. 80	culvert, v	vhere chan	nel slope	e decrease	es.				_	_		_		_	_		_	-			

Table 1' . Stream Reach Morphology		ata																							
Sink Hole Creek Mitigation Project #	92663																							-	
												ata Summ k: Reach 2													
Parameter	Regional Curve Equation	Refer	ence Rea Data	ach(es)		Design			(As-Built	t)		Yr 1			Yr 2			Yr 3			Yr 4			Yr 5	
Dimension - Riffle	Eq.	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max
Bankfull Width (ft)	17.7	11.7	19.7	27.6	12.3	12.7	13.0	13.1	14.9	16.7	12.3	14.4	16.4	I											
Floodprone Width (ft)		20.0	30.5	41.0	70.0	85.0	100.0	54.3	62.2	70.1	51.3	59.5	67.7											1	
Bankfull Mean Depth (ft)	1.04	0.60	0.85	1.10	1.00	1.05	1.10	1.18	1.29	1.40	1.04	1.18	1.31												
Bankfull Max Depth (ft)		0.90	1.70	2.50		1.40		1.88	2.12	2.36	1.65	1.90	2.14											,	
Bankfull Cross Sectional Area (ft2)	19.2	18.3	19.4	20.4	12.6	13.3	14.0	15.5	19.4	23.3	12.8	17.1	21.4												
Width/Depth Ratio		8.6	12.0	15.4	11.8	11.9	12.0	11.0	11.5	11.9	11.8	12.2	12.5												
Entrenchment Ratio		1.6	2.0	2.4	5.4	6.8	8.1	4.2	4.2	4.2	4.1	4.2	4.2												
Bank Height Ratio		1.0	1.4	1.8		1.0		1.0	1.0	1.0	1.0	1.0	1.0												ſ
Bankfull Velocity (fps)																									ſ
Pattern																									
Channel Beltwidth (ft)		16	36	55																					
Radius of Curvature (ft)		28	38	47																					
Meander Wavelength (ft)		70	165	260																					1
Meander Width Ratio		1.1	2.6	4.1																					
Profile																									
Riffle Length (ft)								10	24	56	9	27	46												l
Riffle Slope (ft/ft)		0.036	0.045	0.055	0.038	0.044	0.050	0.017	0.023	0.046	0.007	0.021	0.046												
Pool Length (ft)		13	15	16				9	13	18	4	10	17												l
Pool Spacing (ft)		42	137	231	18	42	65	12	42	62	11	42	62												1
Substrate and Transport Parameters																									
d16 / d35 / d50 / d84 / d95		0.1/	6.6/14/7	1/110		3/8/10/50/9	95	8/	18/26/79/	135	1	1/20/34/134/	212			-									
Reach Shear Stress (competency) lb/f2						1.5			1.6			1.6													
Stream Power (transport capacity) W/m2						9.6			7.1			8.1													
Additional Reach Parameters																		-							
Channel length (ft)						1062			1073			1073												Ļ'	ļ
Drainage Area (SM)		0.72	0.78	0.84		0.84			0.84			0.84												Ļ'	ļ
Rosgen Classification			B4c			B4c			Cb4/Eb4			Cb4/Eb4		ļ	I					l	ļ			Ļ'	L
Bankfull Discharge (cfs)	88		139			85			85			85			1									Ļ'	L
Sinuosity			1.16		1.10	1.15	1.20		1.10			1.10												Ļ'	ļ
BF slope (ft/ft)		0.024	0.026	0.028	0.025	0.025	0.026		0.023			0.025		I											i

									Stre	am Reac	h Data Si	immary:	JT1 React	12											
Parameter	Regional Curve Equation	Referen	nce Reach(es) Data		Design			As-Buil			Yr 1			Yr 2			Yr 3			Yr 4			Yr 5	
Dimension - Riffle	Eq.	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max
Bankfull Width (ft)	7.8	11.7	19.7	27.6	6.0	6.7	7.4		9.5			12.5													
Floodprone Width (ft)		20.0	30.5	41.0	20.0	30.5	41.0		36.9			37.3													
Bankfull Mean Depth (ft)	0.53	0.60	0.85	1.10	0.50	0.55	0.60		0.45			0.33													
Bankfull Max Depth (ft)		0.90	1.70	2.50	0.70	0.75	0.80		0.83			0.79													
Bankfull Cross Sectional Area (ft2)	5.1	10.2	21.6	33.0	3.2	3.9	4.6		4.3			4.1													
Width/Depth Ratio		10.7	18.9	27.0	11.4	11.7	12.0		21.1			37.7													
Entrenchment Ratio		1.3	16.7	32.0	9.5	13.1	16.7		3.9			3.0													
Bank Height Ratio			1.0			1.0			1.0			0.7													
Bankfull Velocity (fps)			1.0			5.1			4.7			4.9													
Pattern																									
Channel Beltwidth (ft)		16	36	55																				, i	
Radius of Curvature (ft)		28	38	47																				ļ 1	
Meander Wavelength (ft)		70	165	260																					
Meander Width Ratio		3.5	5.8	8.0																					
Profile																									
Riffle Length (ft)								5	13	20	5	14	21												
Riffle Slope (ft/ft)		0.040	0.043	0.046	0.038	0.068	0.098	0.025	0.043	0.062	0.021	0.037	0.073												
Pool Length (ft		13	15	16	9	23	37	5	8	11	4	8	13												1
Pool Spacing (ft		42	137	231	9	23	37	11	19	34	10	19	37												1
Substrate and Transport Parameters																									
d16 / d35 / d50 / d84 / d95		.2	2/12/32/81/1	155	.2	/12/32/81	/155																		
Reach Shear Stress (competency) Ib/f2						1.5			1.0			0.8												1	1
Stream Power (transport capacity) W/m2						7.7			4.8			3.8												├ ── !	1
Additional Reach Parameters																_									
Channel length (ft)						489			489			489												<u>г</u>	
Drainage Area (SM)			0.09			0.09			0.09			0.09												├ ── !	1
Rosgen Classification			A6a+/B4c			B4/C4			B4			B4												<u> </u>	1
Bankfull Discharge (cfs)	16		22			20			20			20												<u> </u>	1
Sinuosity			1.16		1.10	1.15	1.20		1.16			1.16												├ ── !	1
BF slope (ft/ft)		0.038	0.047	0.057	0.038	0.046	0.055		0.042			0.04												<u> </u>	1
Note:										1								1							

									Strea	m Reach	Data Su	mmary:	UT2 Rea	ich 1											
Parameter	Regional Curve Equation	Referen	ce Reach((es) Data		Design			As-Buil	t		Yr 1			Yr 2			Yr 3			Yr 4			Yr 5	
Dimension - Riffle	Eq.	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max
Bankfull Width (ft)	4.5	11.7	19.7	27.6		4.0		-	4.2			4.4													
Floodprone Width (ft)		20.0	30.5	41.0	70.0	85.0	100.0		30.6			31.9													
Bankfull Mean Depth (ft)	0.33	0.60	0.85	1.10		0.40			0.26			0.20													
Bankfull Max Depth (ft)		0.90	1.70	2.50		0.50			0.53			0.53													
Bankfull Cross Sectional Area (ft2)	2.1	10.2	21.6	33.0		1.5			1.1			0.9													
Width/Depth Ratio		10.7	18.9	27.0		10.8			16.3			21.5													
Entrenchment Ratio		1.3	16.7	32.0	17.4	21.1	24.8		7.2			7.3													
Bank Height Ratio			1.0			1.0			1.0			1.0													
Bankfull Velocity (fps)			1.1			3.3			4.6			5.6													
Pattern																									
Channel Beltwidth (ft)		16	36	55																					
Radius of Curvature (ft)		28	38	47																					
Meander Wavelength (ft)		70	165	260																					
Meander Width Ratio		3.5	5.8	8.0																					
Profile																									
Riffle Length (ft)								4	12	18	7	12	18												
Riffle Slope (ft/ft)					0.136	0.152	0.167	0.046	0.107	0.149	0.045	0.112	0.176												
Pool Length (ft)								3	6	10	3	8	11												
Pool Spacing (ft)					6	14	21	10	14	22	7	14	22												
Substrate and Transport Parameters																									
d16 / d35 / d50 / d84 / d95																									
Reach Shear Stress (competency) lb/f2																	1								
Stream Power (transport capacity) W/m2																	1								
Additional Reach Parameters			•			•	•		•				•		•	•			•		•	•			
Channel length (ft)						579			596			596													
Drainage Area (SM)			0.02			0.02			0.02			0.02					1								
Rosgen Classification			Aa⁺			Aa⁺4			Aa+/B			Aa+/B													
Bankfull Discharge (cfs)	5		24			5			5			5													1
Sinuosity			1.07		1.10	1.15	1.20		1.13			1.13									1			1	1
BF slope (ft/ft)		0.105	0.106	0.108	0.105	0.106	0.108		0.107			0.107			1		I	I	1		1	1		1	1

Table 1' " Stream Reach Morpholo	gy and Hydraulic	Data																							
Sink Hole Creek Mitigation Project	#92663																								
									Str	eam Rea	ch Data S	ummary:	UT2 Reac	h 2											
Parameter	Regional Curve Equation	Referen	ice Reach	(es) Data		Design			As-Buil			Yr 1			Yr 2			Yr 3			Yr 4			Yr 5	
Dimension - Riffle	Eq.	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max
Bankfull Width (ft)	7.5	11.7	19.7	27.6	6.0	6.7	7.4	4.9	5.5	6.0	5.1	5.8	6.5												
Floodprone Width (ft)		20.0	30.5	41.0	70.0	85.0	100.0	38.3	43.7	49.1	33.2	40.9	48.6												1
Bankfull Mean Depth (ft)	0.51	0.60	0.85	1.10	0.50	0.55	0.60	0.52	0.67	0.81	0.43	0.58	0.72												1
Bankfull Max Depth (ft)		0.90	1.70	2.50	0.70	0.75	0.80	0.86	1.18	1.50	0.79	1.12	1.45												1
Bankfull Cross Sectional Area (ft2)	4.7	10.2	21.6	33.0	3.2	3.9	4.6	2.5	3.7	4.9	2.2	3.5	4.7												í
Width/Depth Ratio		10.7	18.9	27.0	11.4	11.7	12.0	7.4	8.5	9.5	9.0	10.5	11.9												1
Entrenchment Ratio		1.3	16.7	32.0	9.5	13.1	16.7	7.8	8.0	8.2	6.5	7.0	7.5												i l
Bank Height Ratio		1.0			1.0		1.0	1.0	1.0	1.0	1.0	1.0												1	
Bankfull Velocity (fps)			4.9		3.9	5.1	7.5	4.0	5.5	8.8												i			
Pattern																									
Channel Beltwidth (ft)																					1				
Radius of Curvature (ft)		28	38	47																					i
Meander Wavelength (ft)		70	165	260																					i
Meander Width Ratio		3.5	5.8	8.0																					i l
Profile																									
Riffle Length (ft)								13	18	27	11	19	27												1
Riffle Slope (ft/ft)		0.040	0.043	0.046	0.081	0.089	0.098	0.052	0.072	0.091	0.025	0.060	0.092												i
Pool Length (ft)								5	8	11	3	7	11												í
Pool Spacing (ft)			21		9	23	37	9	25	43	12	26	43												1
Substrate and Transport Parameters																						•			
d16 / d35 / d50 / d84 / d95		2	/12/32/81/	155	.2	/12/32/81	/155																		
Reach Shear Stress (competency) lb/f2																		1	1						1
Stream Power (transport capacity) W/m2																		1	1						1
Additional Reach Parameters																_				1					
Channel length (ft)						879			882			882						1							
Drainage Area (SM)			0.08			0.08			0.08			0.08						1	1						1
Rosgen Classification			Aa+			A4			A/B			A/B			1			1	1		1	1	I		1
Bankfull Discharge (cfs)	15		14			19			19			19						1	1						1
Sinuosity			1.04			1.13			1.13			1.13			1			1	1	1	1				1
BF slope (ft/ft)		0.038	0.047	0.057	0.038	0.046	0.055		0.055			0.056						1	1						1
Note: No sediment data was collected for	r UT2 and UT3 durin	1 1 1 1						esent. Ec		2 and UT3	. no sedime		check was	performed	as these stee	ep headwat	er tributari	es are degra	adational sv	stems by na	ature and the	ev are being	built prima	rily out of co	lluvial
material that is designed to be immobile.		5 200			270 0110	., poor ou	- 20 ato pro				.,	oupdoily						4.0 00910	o,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			.,		, 551.57.00	
material that is assigned to be immobile.																									

Sink Hole Creek Mitigation Project										Stream I	Panah Dat	a Summa	N/1 11T2												
	Deviser of Ormer				1			1		Stream	Reach Dat	a Summa	y: 013												
Parameter	Regional Curve Equation	Reference Reach(es) Data		e Reach(es) Data Design		sign As-Built			Yr 1			Yr 2			Yr 3			Yr 4			Yr 5				
Dimension - Riffle	Eq.	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max
Bankfull Width (ft)	4.5	11.7	19.7	27.6		4.0			5.2			6.6												<u>г</u>	
Floodprone Width (ft)		20.0	30.5	41.0	69.6	84.4	99.2		25.2			35.9													
Bankfull Mean Depth (ft)	0.33	0.60	0.85	1.10		0.40			0.41			0.58													
Bankfull Max Depth (ft)		0.90	1.70	2.50		0.50			0.76			0.98													
Bankfull Cross Sectional Area (ft2)	2.1	10.2	21.6	33.0		1.5			2.1			3.9													
Width/Depth Ratio		10.7	18.9	27.0		10.8			12.7			11.5													
Entrenchment Ratio		1.3	16.7	32.0	17.4	21.1	24.8		4.8			5.4												1	
Bank Height Ratio			1.0			1.0			1.0			1.0												L'	
Bankfull Velocity (fps)			0.5			3.3			2.3			1.3												L′	
Pattern						-	-		-																
Channel Beltwidth (ft)		16	36	55																				\square	
Radius of Curvature (ft)		28	38	47																				\square	
Meander Wavelength (ft)		70	165	260																				L!	L
Meander Width Ratio		3.5	5.8	8.0																					
Profile						1	1	40	17	07		1.7	0.1					1				1			
Riffle Length (ft)								10	17	27	11	17	21											└── ┘	┣───
Riffle Slope (ft/ft)					0.136	0.152	0.167	0.060	0.113	0.168	0.064	0.125	0.169												<u> </u>
Pool Length (ft)								3	5	6	4	5	9												
Pool Spacing (ft)					6	13	20	10	15	21	8	15	23												
Substrate and Transport Parameters																									
d16 / d35 / d50 / d84 / d95																									
Reach Shear Stress (competency) lb/f2												3.2												L'	<u> </u>
Stream Power (transport capacity) W/m2												4.2												<u> </u>	
Additional Reach Parameters				1						r		1						1				1			
Channel length (ft)						586			641			641												L	—
Drainage Area (SM)			0.02			0.02			0.02			0.02					L							L	
Rosgen Classification			Aa+/B			Aa+/B			Aa+/B			Aa+/B												ļ!	<u> </u>
Bankfull Discharge (cfs)	5		11			5			5			5												L	—
Sinuosity			1.02		1.10	1.15	1.20		1.03			1.03												ļ!	<u> </u>
BF slope (ft/ft) Note:		0.105	0.106	0.108	0.105	0.106	0.108		0.111			0.111													L

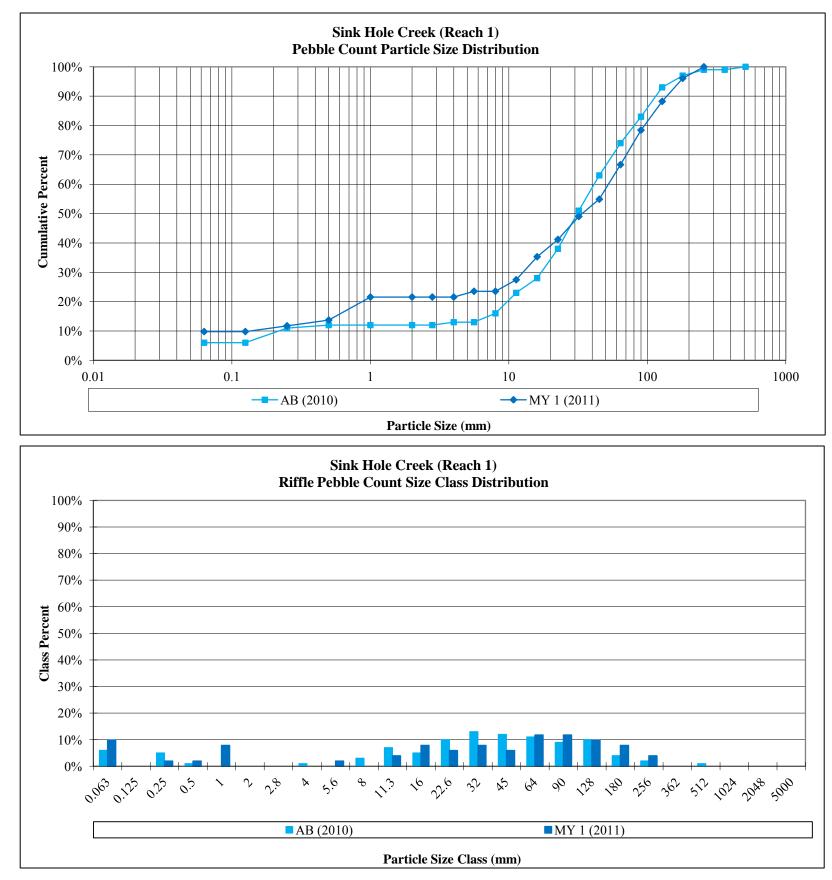
ink Hole Creek Mitigation Project	ct #9266	53																				
							Sin			Reach												
			Cross S		1			Cross Section 2						(Cross S		3					
Parameter	AB	MY1	Po MY2	ool MY3	MY4	MY5	AB	MY1		ffle MY3	MY4	MY5	AB	MV1	Rif MY2	fle MV2	MV4	MV5				
imension	AD		IVI I Z	IVIT5	111 4	IVIT5	AD		IVI I Z	IVI I J	10114	IVI 15	AD		IVI 1 Z	IVI I J	11114	WIT5				
BF Width (ft)	14.1	16.6					12.9	12.6					14.2	14.3								
Floodprone Width (ft)	64.0	66.6					69.4	69.4					58.0	56.7								
BF Cross Sectional Area (ft2)	18.6	20.3					12.2	9.8					17.4	14.5								
BF Mean Depth (ft)	1.31	1.23					0.95	0.78					1.23	1.01								
BF Max Depth (ft)		2.69					1.48	1.34					1.96	1.76								
Width/Depth Ratio	10.8	13.5					13.6	16.2					11.6	14.1								
Entrenchment Ratio	>4.5	4.0					>5.4	5.5					>4.1	4.0								
Wetted Perimeter (ft)	16.8	19.0					14.8	14.2					16.7	16.3								
Hydraulic Radius (ft)	1.1	1.1					0.8	0.7					1.0	0.9								
ubstrate			•									•				·		i				
d50 (mm)																						
d84 (mm)								1														
							Si	nk Hole	Creek	Reach 2												
			Cross S	Section 4	4				Cross S	Section 5				(Cross S	ection 6	3					
Parameter				Pool						Riffle				Rif								
	AB	MY1	MY2	MY3	MY4	MY5	AB	MY1	MY2	MY3	MY4	MY5	AB	MY1	MY2	MY3	MY4	MY5				
imension																						
BF Width (ft)	13.1	13.0					16.7	16.4					13.1									
Floodprone Width (ft)	80.4	80.1					70.1	67.7					54.3	51.3								
BF Cross Sectional Area (ft2)	14.2	13.4					23.3	21.4					15.5	12.9								
BF Mean Depth (ft)	1.08	1.02					1.40	1.31					1.18	1.04								
BF Max Depth (ft)	1.67	1.71					2.36	2.14					1.88	1.65								
Width/Depth Ratio	12.1	12.7					11.9	12.5					11.0	11.8								
Entrenchment Ratio	6.1	6.1					4.2	4.1					>4.2	4.2								
Wetted Perimeter (ft)	15.3	15.1					19.5	19.0					15.4	14.4								
Hydraulic Radius (ft)	0.9	0.9					1.2	1.1					1.0	0.9								
	A	AB (2010))		Ν	1Y-1 (201	1)		N	/IY-2 (20 ⁻	12)		M١	Y-3 (20	13)		M	Y-4 (20	14)	M	Y-5 (2015	5)
Parameter	Min	Max	Med		Min	Max	Med		Min		Med							Max			Max I	
attern								1														
Channel Beltwidth (ft)	30	70	51		30	70	51	1														
Radius of Curvature (ft)	32	51	39		32	51	39															
Meander Wavelength (ft)	135	331	227		135	331	227														1 1	
Meander Width Ratio	1.8	5.5	3.8		1.8	5.5	3.8														1 1	
rofile																					1 1	
Riffle length (ft)	9	56	22		9	46	27														1 1	
Riffle Slope (ft/ft)	0.010	0.050	0.020		0.007	0.046	0.020															
Pool Length (ft)	7	21	14		4	17	11															
Pool Spacing (ft)	12	66	39		11	62	46															
														•				•				
ubstrate																						
d50 (mm)	31(R1) / 26((R2)		34(R1)/110(R2)															
d84 (mm)		R1) / 79((R1) /134																
			. ,			• • • •	. /															
dditional Reach Parameters																						
Valley Length (ft)		2006				2006																
Channel Length (ft)		2207				2207																
Sinuosity		1.10				1.10																
Water Surface Slope (ft/ft)		0.025				0.025																
BF Slope (ft/ft)		0.025				0.026																
Rosgen Classification		B/Cb4				Cb4/Eb4																

Table 1(. Cross-Section Morpl	hology	and Hv	draulic	Data																		
Sink Hole Creek Mitigation Project			aunt	Julu																		
									UT1 Re	each 2												
	1		Cross S	ection	1		1			Section 2	2		1									_
Parameter	Pool									iffle												
	AB	MY1	MY2	MY3 MY4 MY5			AB	MY1	MY2 MY		MY4	MY5										
Dimension																						
BF Width (ft)	12.7	11.9					9.5	12.5														
Floodprone Width (ft)		44.0					36.9	37.3														
BF Cross Sectional Area (ft2)	12.3	10.0					4.3	4.1														
BF Mean Depth (ft)	0.97	0.84					0.45	0.33														
BF Max Depth (ft)		1.42					0.83	0.79														
Width/Depth Ratio		14.1					21.1	37.7														
Entrenchment Ratio	3.5	3.7					3.9	3.0														
Wetted Perimeter (ft)	14.6	13.6					10.4	13.1														
Hydraulic Radius (ft)	0.8	0.7					0.4	0.3														
Substrate																						
d50 (mm)																						
d84 (mm)																						
Parameter		AB (2010)		Ν	/IY-1 (201	1)		1	MY-2 (20	12)			3 (2013)		1	MY-4 (20			-5 (2015		
Faranieter	Min	Max	Med		Min	Max	Med		Min	Max	Med		Min I	Max N	1ed	Min	Max	Med	Min	Max	Med	
Pattern																						
Channel Beltwidth (ft)																						
Radius of Curvature (ft)																						
Meander Wavelength (ft)															_							
Meander Width Ratio															_							
Profile															_			_			_	
Riffle length (ft)	5	20	13		5	22	14								_						_	
Riffle Slope (ft/ft)		0.062	0.043		0.021	0.073	0.037								_	_					_	
Pool Length (ft)		11	8		4	13	6								_	_					_	
Pool Spacing (ft)	11	34	15		10	37	17					1			_						_	
								_				4			_						_	
Substrate															_						_	
d50 (mm)		-		·								-			_						_	
d84 (mm)		-				-		-				-			_						_	
Additional Roach Parameters															_						_	
Additional Reach Parameters Valley Length (ft)		422				422		-							_						_	
Channel Length (ft)		422				422						-			_						-	
Sinuosity		1.16				1.16						-			_	-			-			
Water Surface Slope (ft/ft)		0.040				0.040									_						_	
BF Slope (ft/ft)		0.040				0.040															_	
Rosgen Classification		B4				B4										-					_	
		τU				דט			I													

Table 1(. Cross-Section Morpl	hology	and Hy	draulic	Data											
Sink Hole Creek Mitigation Project			uraunc	υαια											
	ci #3200	55				_	_		UT2 Re	ach 1					
	-		Cross S	Section 1	1		-			Section 2					
Parameter				ffle	I					ool					
Falanielei	AB	MY1		MY3	MY4	MY5	AB	MY1	MY2	MY3	MY4	MY5			
Dimension		1											1		
BF Width (ft)	4.2	4.4					7.0	5.4							
Floodprone Width (ft)	30.6	31.9					30.2	26.6							
BF Cross Sectional Area (ft2)	1.1	0.9					5.3	2.9							
BF Mean Depth (ft)		0.20					0.75	0.54							
BF Max Depth (ft)	0.53	0.53					1.40	1.09							
Width/Depth Ratio	16.3	21.5					9.4	10.1							
Entrenchment Ratio	7.2	7.3					4.3	4.9							
Wetted Perimeter (ft)	4.7	4.8					8.5	6.5							
Hydraulic Radius (ft)	0.2	0.2					0.6	0.4							
Substrate															
d50 (mm)															
d84 (mm)															
Parameter		AB (2010			Ν	ЛY-1 (201			Ν	MY-2 (20			MY-3 (2013)	MY-4 (2014)	MY-5 (2015)
i aldinetei	Min	Max	Med		Min	Max	Med		Min	Max	Med		Min Max Med	Min Max Med	Min Max Med
Pattern															
Channel Beltwidth (ft)															
Radius of Curvature (ft)															
Meander Wavelength (ft)															
Meander Width Ratio															
Profile															
Riffle length (ft)	4	18	11		4	18	12								
Riffle Slope (ft/ft)		0.149	0.123		0.045	0.176	0.121								
Pool Length (ft)		10	7		3	11	8								
Pool Spacing (ft)	10	22	13		7	22	13								
Substrate															
d50 (mm)									<u> </u>						
d84 (mm)															
Additional Reach Parameters															
Valley Length (ft)		527				527									
Channel Length (ft)		596				596									
Sinuosity		1.13				1.12									
Water Surface Slope (ft/ft)		0.107				0.105									
BF Slope (ft/ft)		0.107				0.107									
Rosgen Classification		Aa+/E	3			Aa+/B									
		/ 0													

Table 1(. Cross-Section Morphology and Hydraulic Data Sink Hole Creek Mitigation Project #92663

Cross Section 4 Cross Section 4 Cross Section 5 Parameter Rtfle Pool Pool AB MY1 MY2 MY3 MY4 MY3 MY4 MY3 MY4 MY3 MY4 MY4 MY5 AB MY1 MY2 MY3 MY4 MY4 MY5 AB MY1 MY2 MY3 MY4 MY5 AB MY1 MY2 MY3 MY4 MY4 MY5 MY4 MY6 MY1 MY2 MY3 MY4 MY4 MY5 MY4 MY6									l	UT2 Re	ach 2													
Image AB MY1 MY2 MY3 MY4 MY5 AB MY1 MY3 MY3 MY3 MY3 MY3 MY3 MY3 MY3 MY3 MY3 <th< th=""><th></th><th></th><th></th><th>Cross S</th><th>Section 3</th><th>3</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>(</th><th>Cross S</th><th>Section !</th><th>5</th><th>- 1</th><th></th><th></th><th></th><th></th><th></th></th<>				Cross S	Section 3	3									(Cross S	Section !	5	- 1					
Image AB MY1 MY2 MY3 MY4 MY5 AB MY1 MY3 MY4 MY5 AB AB <th>Parameter</th> <th></th> <th></th> <th>Ri</th> <th>ffle</th> <th></th> <th></th> <th></th> <th></th> <th>Ri</th> <th>ffle</th> <th></th> <th></th> <th></th> <th></th> <th>P</th> <th>ool</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	Parameter			Ri	ffle					Ri	ffle					P	ool							
BF Width (m) 49 5.1 6.0 6.5 8.4 8.4 BF Gross Sectional Area (ft2) 2.5 2.2 4.9. 4.9. 4.7. 8.1 7.3 BF Cross Sectional Area (ft2) 2.5 2.2 4.9. 4.7. 8.1 7.3 <		AB	MY1			MY4	MY5	AB	MY1	MY2	MY3	MY4	MY5	AB	MY1	MY2	MY3	MY4	MY5					
Floadporte Width (ft) 33. 33. 32.2 Image: Marked and the second Alexand (ft) 67.4 67.4 67.4 67.4 Image: Marked and the second Alexand (ft) Image: Marked and (ft) Image: Marked and the second (ft) </td <td>Dimension</td> <td></td>	Dimension																							
BF Cross Sectional Area (t2) 2.5 2.2 4.9 4.7 8.1 7.3 1 1 BF Mao Deph (th) 0.86 0.72 0.06 0.86 1.67 1.57 1 BF Mao Deph (th) 0.86 0.79 1.50 1.45 1.67 1.57 1 1.67 1.57 1 1.67 1.57 1.67 1.57 1.67 1.57 1.67 1.57 1.67 1.57 1.67 1.57 1.67 1.57 1.67 1.57 1.67 1.57 1.67 1.57 1.67 1.57 1.67 1.57 1.67 1.57 1.67 1.57 1.67 1.57 1.67 1.57 1.67 1.57	BF Width (ft)	4.9	5.1					6.0	6.5					8.4	8.4									
BF Cross Sectional Area (t2) 2.5 2.2 Image: model of the section of th	Floodprone Width (ft)	38.3	33.2					49.1	48.6					67.4	67.4									
BF Max Depth (th) 0.52 0.43 0.79 0.81 0.72 1.57 1.57 0 0.88 0 0.81 0.70 WithDepth Ratio 0.5 11.9 1.74 9.0 0.80 0.81 0 0 0.81 0 0 0 0.81 0 0 0.81 0 0 0 0.81 0 0 0 0 0.81 0 </td <td></td> <td></td> <td>2.2</td> <td></td> <td></td> <td></td> <td></td> <td>4.9</td> <td>4.7</td> <td></td> <td></td> <td></td> <td></td> <td>8.1</td> <td>7.3</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			2.2					4.9	4.7					8.1	7.3									
BF Max Deptin (h) 0.86 0.79 0 7.6 1.50 1.40 0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.81</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.96</td> <td>0.88</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								0.81						0.96	0.88									
With/Depth Ratio 9.5 11.9 Image: Second Seco	BF Max Depth (ft)	0.86	0.79					1.50						1.67										
Entrenoment Ratio 7.8 6.5 9 59 50 50 6 7.8 8.0 7.8 8.0 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>7.4</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>								7.4																
Wetted Perimeter (ft) 5.9 5.9 5.9 5.9 7.6 8.0 10.3 10.1 10		7.8						8.2						8.0										
Hydraulic Radius (n) 0.4 0.4 0.4 0.4 0.6 0.6 0.6 0.7 0 0 0 Substrate 400 0.6 0.6 0.6 0.6 0.7 0 0 600 0.6 0.6 0.6 0.6 0.7 0 0 0 600 0.6 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.8 0.7 </td <td></td> <td></td> <td></td> <td>1</td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>				1												1								
Substrate Max Max Med My-5 (2015)																								
d50 (mm) Image: Market Marke			•							•					•									
Parameter AB (2010) MY-1 (2011) MY-2 (2012) MY-3 (2013) MY-4 (2014) MY-5 (2015) Pattern Min Max Med Min Max Med Min Max Med Radius of Curvature (ft) Meander Wavelength (ft) Max Med Min Max Max <t< td=""><td>d50 (mm)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	d50 (mm)																							
Parameter AB (2010) MY-1 (2011) MY-2 (2012) MY-3 (2013) MY-4 (2014) MY-5 (2015) Pattern Min Max Med Min Max Max Med			1																					
Min Max Med Pattern Min Max Med Channel Beltwidth (ft) Image: Construction of the second sec			AB (2010))		Ν	MY-1 (201	1)		Ν	/Y-2 (20	12)		M	Y-3 (20	13)		M١	/-4 (201	4)		MY-	5 (2015)	
Pattern Image: Channel Beltwidth (ft) Image: Channel Beltwidth (ft)<	Parameter							,	-															ed
Channel Beltwidth (ft) Image: Channel Length (ft)	Pattern								-		-										-			
Radius of Curvature (ft) Image: Constraint of the sector of the sect																								
Meander Wavelength (ft) Image: Meander Width Ratio Im									-												-	· · · · ·		
Meander Width Ratio Image: Constraint of the sector of									-															
Profile Image: Constraint of the length (ft) 13 27 18 Riffle length (ft) 0.052 0.091 0.077 0.025 0.092 0.060 Image: Constraint of the length (ft) Image: Constet of the length (ft) Im									-												-	· · · · ·		
Number Number Network 13 27 18 Riffle length (ft) 13 27 18 Riffle Slope (ft/ft) 0.052 0.091 0.077 Pool Length (ft) 5 11 8 Pool Spacing (ft) 9 43 26 12 43 32 Substrate - - - - - d50 (mm) - - d50 (mm) - - Madditional Reach Parameters - - Valley Length (ft) 781 882 Sinuosity 1.13 1.13 Water Surface Slope (ft/ft) 0.055 0.056									-												-	L		_
Riffle Slope (ft/ft) 0.052 0.091 0.077 Pool Length (ft) 5 11 8 Pool Spacing (ft) 9 43 26 Substrate - - - d50 (mm) - - - d44 (mm) - - - Additional Reach Parameters - - - Valley Length (ft) 781 781 - Channel Length (ft) 882 882 - - Sinuosity 1.13 1.13 1.13 - - - Water Surface Slope (ft/ft) 0.058 0.056 0.056 - - - -		13	27	18		11	27	20	-															
Pool Length (ft) 5 11 8 Pool Spacing (ft) 9 43 26 Substrate - d50 (mm) - d50 (mm) - d50 (mm) - d64 (mm) - Additional Reach Parameters - Valley Length (ft) 781 The Sinusity 1.13 Water Surface Slope (ft/ft) 0.058 BF Slope (ft/ft) 0.055									-												-	· · · · ·		
Pool Spacing (ft) 9 43 26 12 43 32 Substrate									-												-	· · · · ·		
Substrate						-			-												-	· · · · ·		
d50 (mm) - - Image: Constraint of the constrai									-												-	L		_
d50 (mm) - - Image: Constraint of the constrai	Substrate																							
d84 (mm) - - Image: Constraint of the state of			-				-																	
Additional Reach Parameters Image: Channel Length (ft) 781 Image: Channel Length (ft) 781 Image: Channel Length (ft) 882 Image: Channel Length (ft) 882 Image: Channel Length (ft) 882 Image: Channel Length (ft) 0.058 Image: Channel Length (ft)																								
Valley Length (ft) 781 781 Image: Channel Length (ft) 882 Image: Channel Length (ft) 882 Image: Channel Length (ft) 882 Image: Channel Length (ft) 1.13 Image: Channel Length (ft) Image: Chann																								
Valley Length (ft) 781 781 Image: Channel Length (ft) 882 Image: Channel Length (ft) 882 Image: Channel Length (ft) 882 Image: Channel Length (ft) 1.13 Image: Channel Length (ft) Image: Chann	Additional Reach Parameters																							
Channel Length (ft) 882 882 Image: Constraint of the state of			781				781														-			
Sinuosity 1.13 1.13 Image: Constraint of the system Image: Consthe system Im																								
Water Surface Slope (ft/ft) 0.058 0.058 BF Slope (ft/ft) 0.055 0.056																								
BF Slope (ft/ft) 0.055 0.056																					-			
Rosgen Classification A/B A/B	Rosgen Classification		A/B				A/B														-			

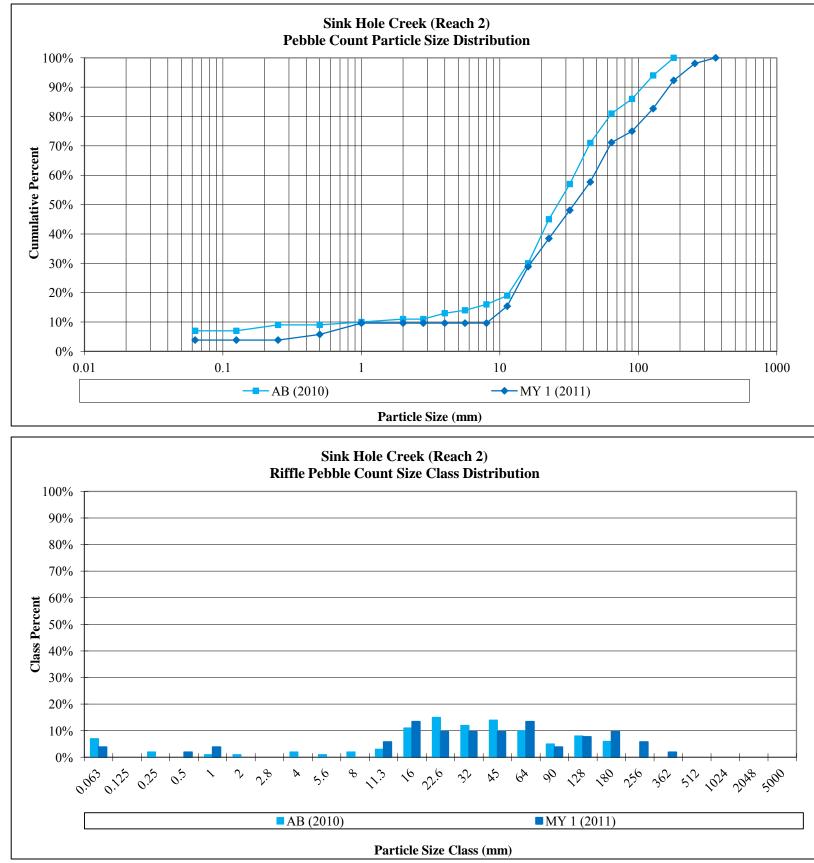

				Data											
Table 1(. Cross-Section Morph			araulic	Data											
Sink Hole Creek Mitigation Project	ct #9266	53													
									UT	-					
_			Cross S				Cross Section 2								
Parameter	AB	MY1		ffle	1474	MAYE	AB	MY1			N 43/4	141/5			
Dimension	AB	IVI Y 1	IVI Y Z	MY3	MY4	MY5	AB	IVIYI	MY2	MY3	MY4	NIY5			
Dimension BF Width (ft)	5.2	6.6		<u>г г</u>			6.0	6.0	r	r	1	1			
Floodprone Width (ft)		6.6 35.9					6.2 44.5	6.9 46.8							
BF Cross Sectional Area (ft2)							44.5								
	2.1	3.9 0.58						5.6							
BF Mean Depth (ft)							0.69	0.82							
BF Max Depth (ft)	0.76	0.98					1.28	1.42							
Width/Depth Ratio		11.5					9.0	8.4							
Entrenchment Ratio	4.8	5.4		├ -			7.2	6.8							
Wetted Perimeter (ft)	6.0	7.8					7.6	8.5							
Hydraulic Radius (ft)	0.4	0.5					0.6	0.7							
Substrate								-							
		-						-		-					
d84 (mm)						1) (4 (004	A)			1) (0 (00					
Parameter		AB (2010				ЛҮ-1 (201		-		MY-2 (20		_	MY-3 (2013)	MY-4 (2014)	MY-5 (2015)
	Min	Max	Med		Min	Max	Med	-	Min	Max	Med	-	Min Max Med	Min Max Med	Min Max Med
Pattern										-		_			
Channel Beltwidth (ft)								-				-			
Radius of Curvature (ft)								-				_			
Meander Wavelength (ft)								-		-		-			
Meander Width Ratio								-				-			
Profile	40	07				0.1	10	-		r	1	-			
Riffle length (ft)	10	27	14		11	21	19	-		-		-			
Riffle Slope (ft/ft)		0.168	0.113		0.064	0.169	0.123	-		-		-			
Pool Length (ft)		6	5		4	9	5	-				-			
Pool Spacing (ft)	10	21	17		8	23	17	-				-			
Substrate													I		
d50 (mm)		-				_		-							
d30 (mm)		-				-		-							
004 (11111)		-				-		-							
Additional Reach Parameters															
Valley Length (ft)		622				622									
Channel Length (ft)		641				641									
Sinuosity		1.03				1.02									
Water Surface Slope (ft/ft)		0.105				0.106									
BF Slope (ft/ft)		0.111				0.111									
Rosgen Classification		Aa+/B				Aa+/B									
goniouuon						/ 0									

Cross-Section Pebble Count (Sink Hole Creek-Reach 1) Sink Hole Creek Mitigation Project, EEP# 92663

SITE OR PROJECT:	Sink Hole Creek
REACH/LOCATION:	Reach 1, 1st riffle downstream of VP6
FEATURE:	Riffle

				2011	
MATERIAL	PARTICLE	SIZE (mm)	Total	Class %	% Cum
Silt/Clay	Silt / Clay	< .063	10	4%	10%
	Very Fine	.063125		0%	0%
	Fine	.12525	2	0%	0%
Sand	Medium	.2550	2	2%	6%
	Coarse	.50 - 1.0	8	4%	10%
	Very Coarse	1.0 - 2.0		0%	0%
	Very Fine	2.0 - 2.8		0%	0%
	Very Fine	2.8 - 4.0		0%	0%
	Fine	4.0 - 5.6	2	0%	0%
	Fine	5.6 - 8.0		0%	0%
Gravel	Medium	8.0 - 11.0	4	6%	16%
Gravei	Medium	11.0 - 16.0	8	13%	29%
	Coarse	16 - 22.6	6	10%	39%
	Coarse	22.6 - 32	8	10%	49%
	Very Coarse	32 - 45	6	10%	59%
	Very Coarse	45 - 64	12	13%	72%
	Small	64 - 90	12	4%	76%
Cobble	Small	90 - 128	10	8%	84%
Copple	Large	128 - 180	8	10%	94%
	Large	180 - 256	4	6%	100%
	Small	256 - 362		2%	102%
Dauldar	Small	362 - 512		0%	0%
Boulder	Medium	512 - 1024		0%	0%
	Large-Very Large	1024 - 2048		0%	0%
Bedrock	Bedrock	> 2048		0%	0%
Total %	of whole count		102	100%	102%

Summary Data							
Channel mate	erials						
D ₅₀ =	33.87						
D ₈₄ =	109.93						
D ₉₅ =	171.76						



Cross-Section Pebble Count (Sink Hole Creek-Reach 2) Sink Hole Creek Mitigation Project, EEP# 92663

SITE OR PROJECT:	Sink Hole Creek
REACH/LOCATION:	Reach 2, 1st riffle upstream of VP4
FEATURE:	Riffle

				2011	
MATERIAL	PARTICLE	SIZE (mm)	Total	Class %	% Cum
Silt/Clay	Silt / Clay	< .063	4	4%	4%
	Very Fine	.063125		0%	0%
	Fine	.12525		0%	0%
Sand	Medium	.2550	2	2%	6%
	Coarse	.50 - 1.0	4	4%	10%
	Very Coarse	1.0 - 2.0		0%	0%
	Very Fine	2.0 - 2.8		0%	0%
	Very Fine	2.8 - 4.0		0%	0%
	Fine	4.0 - 5.6		0%	0%
	Fine	5.6 - 8.0		0%	0%
Gravel	Medium	8.0 - 11.0	6	6%	16%
Gravei	Medium	11.0 - 16.0	14	13%	29%
	Coarse	16 - 22.6	10	10%	39%
	Coarse	22.6 - 32	10	10%	49%
	Very Coarse	32 - 45	10	10%	59%
	Very Coarse	45 - 64	14	13%	72%
	Small	64 - 90	4	4%	76%
Cobble	Small	90 - 128	8	8%	84%
Conne	Large	128 - 180	10	10%	94%
	Large	180 - 256	6	6%	100%
	Small	256 - 362	2	2%	102%
Boulder	Small	362 - 512		0%	0%
Doulder	Medium	512 - 1024		0%	0%
	Large-Very Large	1024 - 2048		0%	0%
Bedrock	Bedrock	> 2048		0%	0%
Total %	of whole count		104	100%	102%

Summary I	Data
Channel mat	erials
D ₅₀ =	34.26
D ₈₄ =	134.07
$D_{95} =$	212.16

Sink Hole Creek Photo Log - Reference Photo Points

Notes: Photos for Sink Hole Creek were taken November 2011.

- 1. Photo point locations are shown on the plan views in the actual location the picture was taken.
- 2. All points are marked with a wooden stake and flagging tape. For channel points, the stake is set up on an adjacent bank.

Photo Point 1: looking upstream

Photo Point 1: looking downstream

Photo Point 2: looking upstream

Photo Point 2: looking downstream

Photo Point 3: looking upstream

Photo Point 3: looking downstream

Photo Point 4: looking upstream

Photo Point 5: looking upstream

Photo Point 5: looking downstream

Photo Point 6: looking upstream

Photo Point 6: looking downstream

Photo Point 7: looking upstream

Photo Point 7: looking downstream

Photo Point 8: looking upstream

Photo Point 8: looking downstream

Photo Point 9: looking upstream

Photo Point 9: looking downstream

Photo Point 10: looking upstream

Photo Point 10: looking downstream

Photo Point 11: looking upstream

Photo Point 12: looking upstream

Photo Point 12: looking downstream

Photo Point 13: looking upstream

Photo Point 14: looking upstream

Photo Point 14: looking downstream

UT 1 to Sink Hole Creek-Reach 2 Photo Log - Reference Photo Points

Notes: Photos for UT1-Reach 2 were taken in October 2011.

- 1. Photo point locations are shown on the plan views in the actual location the picture was taken.
- 2. All points are marked with a wooden stake and flagging tape. For channel points, the stake is set up on an adjacent bank.

UT1 Photo Point 1: looking upstream

UT1 Photo Point 1: looking downstream

UT1 Photo Point 2: looking upstream

UT1 Photo Point 2: looking downstream

UT1 Photo Point 3: looking upstream

UT1 Photo Point 3: looking downstream

UT1 Photo Point 4: looking upstream

Sink Hole Creek – UT2 Photo Log - Reference Photo Points

Notes: Photos for UT2 were taken November 2011.

- 1. Photo point locations are shown on the plan views in the actual location the picture was taken.
- 2. All points are marked with a wooden stake and flagging tape. For channel points, the stake is set up on an adjacent bank.

Photo Point 1: looking downstream

Photo Point 2: looking upstream

Photo Point 2: looking downstream

Photo Point 3: looking upstream

Photo Point 3: looking downstream

Photo Point 4: looking upstream

Photo Point 4: looking downstream

Photo Point 5: looking upstream

Photo Point 5: looking downstream

Photo Point 6: looking upstream

Photo Point 7: looking upstream

Photo Point 7: view of confluence with UT3

Photo Point 7: looking downstream

Photo Point 8: looking upstream

Photo Point 8: looking downstream

Photo Point 9: looking upstream

Photo Point 9: looking downstream

Photo Point 10: looking upstream

Photo Point 10: looking downstream

Photo Point 11: looking upstream

Photo Point 11: looking downstream

Photo Point 12: looking downstream

Photo Point 13: looking upstream

Photo Point 13: looking downstream

Photo Point 14: looking upstream

Photo Point 14: looking downstream

Sink Hole Creek – UT3 Photo Log - Reference Photo Points

Notes: Photos for UT3 were taken November 2011.

- 1. Photo point locations are shown on the plan views in the actual location the picture was taken.
- 2. All points are marked with a wooden stake and flagging tape. For channel points, the stake is set up on an adjacent bank.

Photo Point 1: looking downstream

Photo Point 2: looking upstream

Photo Point 2: looking downstream

Photo Point 3: looking upstream

Photo Point 3: looking downstream

Photo Point 4: looking upstream

Photo Point 4: looking downstream

Photo Point 5: looking upstream

Photo Point 5: looking downstream

Photo Point 6: looking upstream

Photo Point 6: looking downstream

Sink Hole Creek – UT1 Reach 1 Preservation Reach Photo Log - Reference Photo Points

Notes: Photos for UT1 Reach 1 Preservation Reach were taken November 2011.

1. All points are marked with a wooden stake and flagging tape. For channel points, the stake is set up on an adjacent bank.

Photo Point 1: looking downstream

Photo Point 1: looking upstream

Photo Point 2: looking upstream

Photo Point 3: looking upstream

Photo Point 4: looking upstream

Photo Point 5: looking upstream

Photo Point 6: looking upstream

Photo Point 7: looking upstream

Photo Point 8: looking downstream

Photo Point 8: looking upstream